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摘 要

摘 要

储能系统因其具备在电源和负载间灵活切换的能力而备受关注。合理的储能选
址定容可以增强电力系统的可靠性，延缓其他配电设备的升级需要。此外，储能
能够通过循环充放电提供多种辅助服务：较大较慢的充电循环用于提供能量套利，
而较小较快的充电循环则用于响应频率调节。通过提供辅助服务，储能系统在电
网经济运行上表现出巨大潜力，从而增强了其在配电系统规划中的重要性。
另一方面，储能衰减可能会严重损害储能系统的盈利能力。要解决此问题，我

们需要优化储能系统的日常运行以减轻电池老化，延长使用寿命。然而在大多数
考虑辅助服务的配电系统规划模型中，此问题难以得到解决，因为在长期规划中
纳入快速变化的储能系统实时信号用以响应辅助服务，计算任务繁重。
因此，本文针对具有储能的配电系统提出了确定性和两阶段随机规划的扩建方

案，考虑了储能衰减和其提供辅助服务带来的收益。这两种规划方法均采用混合
整数线性模型，优化了配电系统规划总成本：包括投资运维成本，电力交易成本以
及储能的调频收益。为了避免储能参与调频过程中的过充、过放，在目标函数里增
加了一个衰减罚项，可有效延长其使用寿命，提高储能盈利能力。分章小结如下：
首先，对配电系统的确定性规划和两阶段随机规划进行了对比分析，突出了两

阶段随机规划在考虑不确定性后的计算难度，由此引出两种经典的解决方法：L形
算法和渐进对冲算法。本章的算法模型介绍，为后续章节奠定了理论基础。
其次，提出了一种考虑储能的配电系统最优规划方法，其网络重构，储能选址

定容，及变电站扩建在一个混合整数模型中得到优化。在系统运行阶段，目标函数
共同优化了储能衰减和其提供辅助服务收益两项。算例表明，考虑储能衰减的规划
方案可将其寿命延长一年。此外，储能调频收益可与其参与能源套利的收入相当。
最后，本文考虑负荷需求和电价等不确定性，采用高斯混合模型和蒙特卡洛模

拟，生成了具有代表性的随机场景。为加速求解，提出了一种改进的渐进对冲算
法，实现多场景并行计算。算例表明，在对 33节点配电系统进行扩建规划时，改
进算法计算 100个场景的效率约为 L形算法的 15倍，Gurobi求解器的 5倍。此外，
设计了四种渐进对冲算法作为对照实验，验证了改进算法的有效性。

关键词：储能系统；辅助服务；衰减罚项；两阶段随机规划；渐进对冲算法
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ABSTRACT

ABSTRACT

Energy storage systems (ESS) are receiving more attention crediting to their ability of

flexibly switching between power supply and load demand. Appropriate siting and sizing

of ESSs can benefit the system’s reliability and postpone the upgrade of other distribution

facilities. Moreover, ESSs are capable of providing various ancillary services via cyclic

behaviors. Generally, macro charge/discharge cycles play an important role in energy

arbitrage, and micro regulation up/down cycles respond to the requirement of frequency

regulation. By providing multiple ancillary services, ESSs have great potential in im­

proving the economy of the power grid, which strengthens its importance for distribution

system planning.

On the other hand, degradation may harm ESS profitability significantly. To fix it,

we need to optimize the daily operation of ESS to mitigate the aging process and prolong

its lifespan. However, this issue was not addressed properly in most distribution system

planning models considering multiple ancillary services. In fact, it is computationally

burdensome to incorporate the rapidly changing real­time signals of ESSs in the long­run

distribution system planning.

In this dissertation, deterministic and two­stage stochastic programming is proposed

for the distribution system with ESSs, where the storage degradation and ancillary ser­

vice revenue are both considered. Both programs are formulated as mixed­integer linear

programming (MILP) that optimizes the overall planning cost, including investment and

maintenance cost, power transaction cost, and ESS revenue from regulation services. A

degradation penalty is added to the objective to avoid excessive charge/discharge when

ESS provides regulation services, thus prolonging its lifespan to make more profits. The

outline of each chapter can be concluded as follows:

First, a systematic review of deterministic and stochastic linear programs for distri­

bution system planning is presented. It is shown that with consideration of uncertainties,

two­stage stochastic programming is muchmore complicated than deterministic program­

ming. Two classical decomposition techniques, e.g., the L­shaped method and the pro­

gressive hedging algorithm, are introduced with their pseudo­codes, laying a theoretical

foundation for the solution method proposed in later sections.

II
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Second, an optimal planning method is proposed for a distribution system with ESSs,

where the network configuration, siting and sizing for ESSs, and substation expansion, are

optimized via aMILPmodel. During the operation stage, ESS degradation and its revenue

from ancillary service provision are co­optimized in the objective. In the case study, the

planning result demonstrates that considering the degradation penalty can extend ESS

lifespan by one year. And, the revenue from ESSs by providing regulation services is

comparable with that of energy arbitrage.

Finally, uncertainties of load demand and electricity prices are taken into account. A

Gaussian mixture model is adopted to characterize these uncertainties and a set of repre­

sentative scenarios are sampled. To accelerate the optimization, a modified progressive

hedging (PH) algorithm with parallel computing is introduced. It is demonstrated through

a 33­bus distribution system that the proposed algorithm reaches a speed approximately

15 times as fast as the L­shaped method and 5 times of the Gurobi solver in 100 scenarios.

The effectiveness of every algorithmic enhancement of the modified PH on the basic PH

is also demonstrated via the four designed PH algorithms.

Keywords: Energy storage system; ancillary service; degradation penalty; two­stage

stochastic programming; progressive hedging algorithm
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CHAPTER 1 INTRODUCTION

CHAPTER 1 INTRODUCTION

1.1 Background and Motivation

Despite that the global power demand declined by 2% due to the Covid­19 pandemic

last year [1] , the Chinese load demand still kept going up. With the recovery of the global

economy, it is expected that the overall power demand will restore a fast­growing trend.

Considering the goal of carbon neutrality, future power systems ought to accommodate

rising shares of renewable energy sources (RES). The intermittent nature of RES poses

significant challenges to the balance between load and generation in real time. To cope

with these challenges, one solution is to install energy storage systems (ESS) for the pur­

pose of shifting the peak load [2] and benefiting the renewable penetration [3] . Batteries

have been more and more economical [4] and are proved to have a startling decline speed

in levelized cost of energy [5] . Such that, ESSs have reached widespread application in

distribution systems, e.g., as an effective means of energy arbitrage.

With the development of energy storage technologies, the application of ESSs in dis­

tribution systems is no longer limited to arbitrage or load leveling [6­7] . These storage

units play a crucial role in handling voltage drop and power loss while ensuring a high

reliability of the distribution system. Considering that ESS’s shorter duration applications

(mainly less than 4 hours) remain the most cost­effective [8] , ESSs are capable of provid­

ing multiple ancillary services through charge and discharge, including voltage support,

loss reduction, reserve procurement, congestion alleviation, network expansion deferral,

and so on. As a matter of fact, the potential revenue from extra ancillary services can

further improve the profits of ESS investment [9] .

To further enhance the cost­effectiveness of ESSs, it is advisable that we should lever­

age these storage units to provide as many ancillary services as possible when investing

in them in power systems [10] . Only then will their benefits overcome the high investment

cost. To promote ESS investment, an optimization framework for distribution system

planning considering ESSs is supposed to be designed to offer references for practices.

This kind of problem is normally constrained bywell­defined physical laws such as Kirch­

hoff’s laws and capacity limits to minimize the overall cost or energy loss of the whole
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system. Meanwhile, the optimal siting and sizing of all distribution devices will be given

in the planning result, which is often represented by integer/binary variables.

Moreover, mitigating the cycle degradation is another way to improve ESS’s prof­

itability, which requires the co­optimization of a set of battery behaviors including charge

and discharge [9] . In general, the frequency and the depth of discharge of battery cycles

vary from one ancillary service to another. For example, when providing frequency regu­

lation services, battery charges with frequent micro­cycles, while participating in energy

arbitrage, the cycle tends to have low frequency and high depth of discharge. Various

battery cycles also reflect different aging rates. A degradation model which indicates the

aging process of multiple ancillary services is needed to be incorporated in the above­

mentioned optimization problem, thus co­optimizing the battery behaviors to determine

which ancillary service to be provided at a time.

Motivated by these factors, it is imperative to make thorough studies of a distribu­

tion system planning model considering ESS providing multiple ancillary services and its

degradation. This model can promote the adoption of these storage devices in existing

power systems. The dissertation focuses on utilizing mixed­integer programming to il­

lustrate the planning problem and comes up with a novel modified algorithm to accelerate

the solution. ESSs providing ancillary services and its degradation model are creatively

combined to distribution planning, which could help the system operator improve the

economy of the distribution system.

1.1.1 Ancillary Service Market

Frequency Control Services

Voltage Control Services

Emergency Services

Frequency Regulation (minutes)

Load Following (minutes)

Operating Reserves (10 min to 2 h)

Reactive Power Support (seconds)

Black-start Services (hours)

Main Ancillary Services

Figure 1.1 Definitions of major types of ancillary services.

Ancillary services garner our interests because of their importance to the reliable and

safe operation of power systems. Some of them are under strict control of the government

and system operators [11] , while others can be procured by bidding among third parties.

2
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Considering that energy markets are different all over the world, it is unreasonable to hold

unified standards for these services when they are used for different power systems. In

general, main ancillary services can be divided into three types as illustrated in Fig. 1.1

according to their functions.

For a power system, it is extremely important to stabilize the frequency within a

certain range to ensure that all devices work safely, and frequency control services can

be grouped into three categories. The first one is to provide frequency regulation, which

uses generators integrated into the grid to change the active power outputs. For interlinked

power grids, the interconnection frequency is controlled via another service, which is load

following. The response time of regulation services ranges from seconds to minutes while

the load following service handles the frequency deviation over a longer time scale. The

third type of frequency control services are spinning and non­spinning operating reserves,

which are prepared for fast load restoration after an outage. To cope with different contin­

gency events in the system, ten­minute reserves and thirty­minute reserves are deployed

via online and off­line generation units and interrupted loads [12] .

Voltage control is also indispensable for power system operation since low voltage

can result in severe blackouts [13] . Multiple devices such as generators, synchronous con­

densers, and capacitor banks can provide or absorb extra reactive power to maintain node

voltage within a security scope. Beyond this, once the power fails, emergency services,

i.e., black­start service should help the grid resume normal work as soon as possible to re­

duce economic loss. The provision of this service calls for power plants with enough real

and reactive power output which can restart other generation units in the power system.

Energy Arbitrage
20.3%

Spin/Non-spin 7.7%

Frequency
Regulation
29.3%

Resource Adequacy
42.7%

Wholesale (CAISO)

Revenue Sources
üOperating costs
üDebt service
üTaxes
üCapital costs

Peak Shaving

Operating Reserves

Rescheduling and Redispatch

Reactive Power and Voltage Control

Automatic Generation Control (AGC)

Primary Frequency Regulation

Restoration Services

Ancillary Services in Power Market

Profit:
• Energy Arbitrage

(Charge/discharge)
• Other services

(Regulation up/down)

Energy Storage
Systems

Loss:
• Cell degradation

Ancillary services mainly
discussed in this dissertation.

Participation 

Figure 1.2 Overview of the relationship between power ancillary service market and ESSs.①

① Data Source: Lazard’s Levelized Cost of Storage Analysis Version 4.0
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After introducing main ancillary services and their functions, we need to figure out

how much benefit they can bring to the current power market. As illustrated by Fig. 1.2,

in the wholesale market, e.g., the market operated by the California Independent Sys­

tem Operator (CAISO), a large proportion of its revenue consists of energy arbitrage and

frequency regulation [8] , both of which can be provided by ESSs. Similarly, for a distri­

bution system, these storage units also play a positive role in enhancing the grid reliability

by supplementing multiple ancillary services [14] . Besides, the ESSs’ ability of peak load

shaving can postpone the upgrades of electric installations [15] thus cutting down the ex­

penses during the planning process [16] . Nevertheless, the feasibility of ESS’s profiting

from ancillary service products [17] still needs further exploration within a distribution

system scale, among which the battery aging problem should not be neglected. For in­

stance, the degradation process of lithium­ion batteries (LIB) is complex. Therefore it

used to be described by a nonlinear model that is typically entangled to both stress cy­

cles and operating time [18] , which poses great challenges to distribution system planning

equipped with LIBs.

1.1.2 Energy Storage System

Figure 1.3 Global cumulative battery storage energy capacity.②

As mentioned before, ESSs have been central components to power grids crediting

to their capability of dynamically switching between power generation and load [19] . In

essence, stacked batteries connect in series and parallel to work as a storage system, so

the development of ESSs relies on the progress of battery technology. As the technol­

② Data Source: BloombergNEF New Energy Outlook 2020 ­ Executive Summary
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ogy becomes mature and the cost is plummeting, it is witnessed last years that battery

deployment keeps increasing all over the world, as shown by Fig. 1.3.

So far, wildly used lead­acid batteries have been gradually replaced bymore advanced

batteries in power system applications. Emerging technologies including the Nickel Cad­

mium, Sodium Sulphur, Lithium­Ion, and Zinc Bromine batteries are making their way

into our grids [20] . Specifically, the LIB is the most promising candidate because of its

high energy density and efficiency in practice while others remain in the experimental

stage. Design and material are two key factors that determine battery characteristics: ca­

pacity, efficiency, cost, life span, energy density, and self­discharge. Fig. 1.4 gives us

six common examples of batteries and their feature indices. In practice, ESSs composed

of batteries are supposed to strike a balance between high efficiency and low cost hence

prospective to commercial usage.

Battery Type Largest Capacity
(Commercial Unit) Efficiency & Cost Life Cycle &

Depth of Discharge
Energy Density &

Self-discharge Rate

Lead Acid
(flooded type) 10 MW/40 MWh • !=72-78%;

• 50-150 Euro/kWh
1000–2000 cycles 
at 70% depth of discharge

ü 25 Wh/kg;
ü Self-discharge 2–5%/month

Lead Acid
(valve regulated) 300 kW/580 KWh • !=72-78%;

• 50-150 Euro/kWh
200–300 cycles 
at 80% depth of discharge

ü 30–50 Wh/kg;
ü Self-discharge 2–5%/month

Nickel Cadmium 
(NiCd) 27 MW/6.75 MWh • !=72-78%;

• 200–600 Euro/kWh
3000 cycles 
at 100% depth of discharge

ü 45–80 Wh/kg;
ü Self-discharge 5-20%/month

Sodium Sulphur 
(NaS) 9.6 MW/64 MWh • !=89% 2500 cycles 

at 100% depth of discharge
ü 100 Wh/kg;
ü No self-discharge

Lithium-Ion 100MW/129MWh • !≈90%;
• 700-1000 Euro/kWh

3000 cycles
at 80% depth of discharge

ü 90–190 Wh/kg;
ü Self-discharge 1%/month

Zinc Bromine 1 MW/4 MWh • !=75%;
• 360-1000Euro/kWh

1300 cycles
at 100% depth of discharge

ü 70 Wh/kg;
ü Negligible self-discharge

Figure 1.4 Characteristics of six typical battery technologies.

Another crucial challenge for battery technology is cell degradation during opera­

tion. Batteries will fail to satisfy the peak load demand anymore after chronic capacity

decay [21] . It raises the interest to co­optimize the degradation mechanism of batteries

in the grid planning problem [9] , otherwise, the early retirement of ESSs will harm the

economy of the whole power system.

Most batteries have a nonlinear degradation curve where their aging process is di­

vided into calendar aging and cycle aging [22­23] . The former has nothing to do with bat­

tery charge or discharge but only with time; the latter refers to the cell degradation caused

by cycling behaviors [18] . The degradation rates of batteries are not confined to exter­

nal factors like time, charge/discharge, and temperature, such that it is extremely hard to

obtain a cell degradation model and incorporate it into optimization.
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1.1.3 Distribution System Planning

Attributing to its proximity to the load side, the distribution system deserves prior

consideration within the whole power system. The investment of the distribution system

usually accounts for 30%­50% of the total system cost [24] , which renders the necessity

of fast and economical planning solutions through optimization models. For distribution

system planning, the ultimate goal is to satisfy the increasing load demand while ensuring

economical, reliable, and safe operations.

The major tasks of traditional power system planning are the siting and sizing for sub­

stations and network reconfiguration. However, we are bound to minimize the adverse

effects of newly integrated devices, e.g., energy storage, electric vehicles, distributed en­

ergy resources, during the planning process. The concept of the active distribution net­

work appears and promotes the development of the distribution system planning model.

More uncertain factors and complicated operation scenarios are taken into account hence

give rise to more novel optimization algorithms.

The general workflow for distribution system planning is demonstrated by Fig. 1.5.

The planning model should consider both the planning requirement and optimization tar­

gets. Besides, power generation planning is an extremely important section of the whole

planning problem, including the siting and sizing for substations, distributed generators

(DG), and ESSs. Network planning is another important section of the model formula­

tion aiming to minimize the annual investment and operation cost under power balance

constraint, line capacity constraint, node voltage limit, network radiality constraint, etc.

To take the reliability of the system into account, load curtailment cost, unserved energy

cost, and outage cost are also added to the objective function. Moreover, reliability in­

dices such as customer interruption duration (CID), the loss of load probability (LOLP),

and the expected energy not supplied (EENS) are engaged into constraints to ensure the

network configuration being reliable.

A planning model under activation management is proposed in line with the develop­

ment trends of smart grids, i.e., DGs, ESSs, and demand response have become increas­

ingly important. Meanwhile, after the reform of electric markets, more stakeholders, e.g.,

integrated energy service providers (IESP) and some prosumers, are involved in the deci­

sion of distribution system planning. To achieve a trade­off between the IESPs’ revenue

and the total cost spent by system operators, multi­objective planning and multi­layer

optimization are used. Furthermore, the scenario and relevant parameters are more com­
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Model formulation
ü Power generation planning: siting & sizing for substations/ESSs/ EV charging stations.
ü Network planning: network configuration; sizing for feeders.
ü Planning under active management: siting & sizing for DGs.
ü Planning considering multi-stakeholders: distribution system operators & integrated

energy service providers.

• Multi-object planning;
• Two-layer optimization method;

Ø Optimization algorithm:

Spatial load forecasting and analysis of current grid in the planning area

Planning structures

Solution methods
Ø Artificial-intelligence algorithm:

The optimal planning scheme for a distribution system is obtained

• Planning considering uncertainties;
• Multi-stage planning.

1. Branch & bound;
2. Benders decomposition;
3. ……

1. Genetic algorithm;
2. Particle swarm optimization;
3. Simulated annealing algorithm;
4. ……

Figure 1.5 Flowchart of distribution system planning.

plicated accounting for the increasing number of investors, which encourages us to take

uncertainties into account. At last, multi­stage planning is utilized especially when the

planning period would last for over a decade.

In most cases, there are plenty of binary and integer variables in the objective and

constraints of the planning problem. Both optimization algorithms and heuristic algo­

rithms are proposed to accelerate the solution. The former tends to obtain the solution

with a lower optimality gap, while the latter can handle a large­scale optimization with

higher efficiency.

1.2 Literature Review

A large body of the literature lies in modeling ESS degradation. To estimate ESS’s

lifespan, semi­empirical battery degradation models [18,25] have been proposed and ap­
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plied to predict long­term cycle aging of large­format cells [26] . However, in combination

with rainflow uncertainty [27] , these models will add excessive computational burden to

an optimization scheme. In this regard, there have been several attempts to derive a sim­

plified degradation model and evaluate ESS’s profitability. Foggo et al. [9] co­optimizes

a data­driven linear penalty term denoting the battery degradation rate in the objective,

which maximizes the total revenue of ESSs with energy arbitrage and ancillary services.

Cardoso et al. [28] linearizes the function of storage capacity loss within specific domains

and considers battery aging effects by a linear constraint. He et al. [29] embeds the cal­

culation of battery cycle life into a profit maximization model for optimal bidding and

operational schedules. Based on case studies of a battery and transformer deployment,

Xi et al. [30] co­optimizes four types of services provided by the ESS, namely, energy

arbitrage, regulation service, restoration service, and transformer load relieving, which

are applicable to the utility’s transformer capacity planning with batteries. However, the

trade­off between the ESS degradation and the income from these ancillary services is ig­

nored in the model. Apart from the above­mentioned literature, a classification of major

researches relevant to ESS degradation is listed in Table 1.1. To the best of our knowledge,

distribution system expansion planning (DSEP) which considers both ESS’s providing an­

cillary services and its degradation is rarely studied so far.

Table 1.1 Review of literature related to ESS degradation (AS: ancillary service).

Motifs Methods & Algorithms

ESS degradation
& AS
[9] [18] [29]

[31­32]

Semi­empirical battery degradation model;
Profit maximization model;
Performance­based regulation mechanism;
Rainflow cycle­counting algorithm.

DSEP & ESS
degradation
[33­36]

Piecewise linearized battery lifetime model;
Planning­operation co­optimization model;
Mixed­integer linear programming;
Benders decomposition.

DSEP & ESS
degradation
& AS [30]

Failure threshold of ESS capacity;
Stochastic dynamic programming model;
Dynamic programming algorithm.

Among studies on optimization for DSEP, convex relaxation [37] combined with Dis­

tFlow [38] has been a popular method although it is not easy to guarantee an exact relax­

ation. Mixed­integer linear programming (MILP) is an alternative, which can be effi­

ciently solved by current commercial optimization solvers and applicable to bidirectional
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power flow problems [39] . Besides, considering inherent uncertainties of a realistic distri­

bution system including resource availability, price fluctuations, load change, and policy

restrictions, MILP can be further coupled with robust or stochastic optimization. Chen

et al. [33] illustrates the uncertainties of PV output and multi­load demand with dual norms

to calculate the worst cases directly, then a two­stage robust optimization model for en­

ergy hub planning and operation is merged into a single­stage MILP. Baringo et al. [40]

considers both short­term and long­term uncertainty in the DSEP, which are handled by

the K­means clustering technique and confidence bounds, respectively. Zhou et al. [41]

presents a two­stage stochastic programming model, in which Monte Carlo simulation

(MCS) is utilized for addressing energy demand and supply uncertainty. Rafinia et al. [42]

models multiple uncertainties due to load fluctuations, power generation of wind and solar

farm, along with generation deficiency. Stochastic scenarios are generated by a combined

process of MCS, Roulette wheel mechanism, and scenario reduction algorithm. However,

for every uncertain parameter in these aforementioned DSEP models, the corresponding

scenarios are sampled from a single normal distribution. To deal with uncertainty in this

dissertation, we adopt a Gaussian mixture model (GMM) [43] which can form smooth ap­

proximations to arbitrary probability density functions (PDF).

Moreover, considering uncertainties may lead to excessive computational burden in

DSEP problems. As for the stochastic programming framework, decomposition tech­

niques are used to address the tractability issue, and are divided into two categories [44] .

One is time­stage­based, known as the L­shaped method, while the other is scenario­

based, i.e. progressive hedging (PH).

In fact, the L­shaped method can be considered as a further extension of Benders

decomposition for stochastic programming [45] . In 1969, it has been introduced as Van

Slyke and Wets’s method [46] , which is 20 years earlier than the PH idea proposed by

Rockafellar and Wets in 1991 [47] . The basic rule of the L­shaped method is to replace the

nonlinear recourse function in the master problem with a lower bound variable, and then

approximate the nonlinear term by reformulating the scenario subproblems [48] . This de­

composition technique has a broader application in vehicle routing problems [49­50] rather

than DSEP.

As for the PH algorithm, it provably converges linearly for stochastic programming

with continuous decision variables [51] , which is superior to the L­shaped method, since

the latter has a significantly increasing difficulty in calculating the master problem as the
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number of iterations grows [44] . When applied to power system planning, Liu et al. [52] de­

velops the PH algorithm to solve a scenario­based multi­stage stochastic planning model.

However, a pipeline model is used to avoid binary variables; thus it is not applicable

for the siting and sizing of other facilities in DSEP. Munoz et al. [53] designs planning

schemes for a transmission system that considers discrete and continuous decision vari­

ables denoting transmission and generation investments, respectively. A hedging process

is utilized to resolve decision conflicts in the first stage of large­scale DSEP with sce­

nario uncertainty [54] , but it is solved by an evolutionary algorithm. None of these works

have modified the PH algorithm to accelerate its convergence when solving a large­scale

MILP, which is typical of the DSEP model.

1.3 Gaps and Challenges

Despite ESSs can bring great potential revenue to our distribution systems, there are

still significant challenges that have not been settled properly in current ESS planning

problems. One of the most imperative tasks is to enhance the accuracy of the ESS’s value

estimation. To this end, considering the battery cycle degradation during the operation

stage is supposed to avoid overestimation of ESS profitability. On the other hand, un­

certainty such as the fluctuation of electricity prices should also be taken into account

for it can affect ESS profits from ancillary service provision. After incorporating both

the degradation model and uncertainty in the planning, we also need to account for the

trade­off between the computation efficiency and model complexity.

1.3.1 Modeling of Battery Degradation

In previous works, the modeling of battery degradation designed for optimization

mainly utilized cycling parameters to predict the battery cycle life: Shen et al. [55] pro­

posed a battery lifespan estimation model based on uniform cycling, then further extended

the model to realistic non­uniform profiles. However, the distributions of battery cycling

parameters need to be known as a priori knowledge and any decision change of the cycling

profile will affect the estimation model. The degradation model of Hamedi et al. [56] was

based on the battery use profile, temperature, and battery characteristics. Zhao et al. [57]

measured the life loss of lead­acid batteries with the cumulative Ah throughput in a cer­

tain period of time. Most of these papers associate the battery degradation with ESS

charge/discharge, state of charge (SOC), and depth of discharge, but few of them con­
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sider the degradation resulted from providing ancillary services, i.e. the frequent regula­

tion up/down can accelerate ESS aging process.

When coupling ESS’s regulation up/down with its charge/discharge, the parameter­

based degradation model is more complicated. According to the American PJM power

market, the regulation signals update every two seconds. In response to these signals, the

battery providing ancillary services is supposed to adjust the output around 1800 times in

an hour. However, the requirement to charge/discharge is not as frequent as that of the

regulation up/down, represented by hourly variables. For a degradationmodel considering

these two types of cycle behaviors, one of the key challenges is to simulate ESS regulation

up/down and charge/discharge with a unified time scale.

𝑑𝑒𝑔𝑛 =
𝐿𝑛

∑
𝑖=1

𝑓𝐷𝑜𝐷(𝐷𝑜𝐷𝑖)𝑓𝑆𝑜𝐶 (𝑆𝑜𝐶𝑖)𝑓𝐶𝑅(𝐶𝑅𝑖) + 𝑘𝑡𝑇 . (1.1)

Eq. (1.1) illustrates a general degradation rate 𝑑𝑒𝑔𝑛 of LIB, which is a function of

cycles𝐿𝑛 and time 𝑇 . Here𝐿𝑛 represents the total cycle number and 𝑘𝑡 is the battery aging

rate. 𝐷𝑜𝐷𝑖, 𝑆𝑜𝐶𝑖, and 𝐶𝑅𝑖 denote the depth of discharge, the mean SOC, and the current

rate of the 𝑖𝑡ℎ battery cycle, respectively. To incorporate this degradation function into our

distribution system planning model, we need to simplify it for the sake of computational

efficiency. The critical task is to linearize the function and transfer it into a function of

the charge/discharge and regulation up/down behaviors. In this way, we could optimize

the battery cycle to mitigate its aging process thus improving ESS profitability.

1.3.2 Uncertainties in Distribution Systems

A stochastic optimization framework is expected to offer a reliable planning scheme

since it is robust to the fluctuation of multiple parameters in distribution systems. Stochas­

tic optimization­based planning model has been corroborated capable of reducing the im­

pact of uncertain factors including the demand change, the facility degradation, and the

technology advance [58­60] . However, due to massive operation parameters and their com­

plicated interrelationship, most research of distribution system planning only includes

limited and simplified representations of uncertain scenarios. To obtain a more com­

prehensive view of the relationship among these uncertainties, the following challenges

remain to be solved:

Insufficient historical data. Historical data of parameters are neither available nor

adequate, causing difficulty in defining their probability density functions (PDF). To fix

11
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it, another representation method utilizing a fuzzy membership instead of the probabilis­

tic approach is adopted [61] . Some uncertain parameters are represented probabilistically

while others are described possibilistically, rendering a hybrid possibilistic–probabilistic

approach [62] as the following.

We assume that the objective of the distribution system planning is 𝑦 = 𝑓(𝑋, 𝑍),
where 𝑋 and 𝑍 denote the possibilistic uncertain parameters and probabilistic ones, re­

spectively. They will be modeled by the 𝛼­cut method and a scenario­based approach:
• Step 1: The scenario set Ω𝑠 is generated to describe the behavior 𝑍.

• Step 2: The upper bound and lower bound of the 𝛼­cut of 𝑦 is calculated:

𝑦𝛼 = min ∑
𝑠∈Ω𝑠

𝜋𝑠 × 𝑓(𝑍𝑠, 𝑋𝛼);

𝑦𝛼 = max ∑
𝑠∈Ω𝑠

𝜋𝑠 × 𝑓(𝑍𝑠, 𝑋𝛼);

𝑋𝛼 ∈ (𝑋𝛼, 𝑋𝛼)

(1.2)

• Step 3: Deffuzzify 𝑦.
It becomes much more difficult to solve this method which has the deficiency of both pure

probabilistic and pure possibilistic methods.

Stochastic dependence. Uncertain factors are usually modeled as time­dependent

variables following different Gaussian distributions [63­64] . However, some uncertainties

are weakly connected to time but are closely related to other randomness. For instance, the

wind power outputs are highly dependent onweather conditions. Therefore, it is necessary

to extend the linear dependence to the stochastic dependence of different uncertain factors

in distribution systems [65] . In this way, the relationship among multivariate uncertainties

should be further investigated and a more advanced probabilistic method is needed to

generate stochastic scenarios accurately.

1.3.3 Solution Method

The computation time of a stochastic optimization model scales drastically with the

increase of stochastic scenarios. To fix it, decomposition techniques are needed to solve

the two­stage stochastic linear program. For the time­stage­based decomposition algo­

rithm, i.e., the L­shaped method, the program is solved based on the iteration between

the master problem and subproblem via feasibility and optimality check. Efficient im­

plementations of the L­shaped method work on saving time of solving each subproblem

because the solution of subproblems in full scenarios is time­consuming. That is why
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recent research proposed to search for an appropriate bunching that can obtain optimal

multipliers for several stochastic scenarios at once [66] . However, this research should

consider a new bunch in each optimization thus may only apply to solving small­scale

stochastic programming.

Efforts were also made on the decomposition of scenarios instead of time stages,

namely scenario­based decomposition. One of the representatives is the PH algorithm.

However, both the convergence and the solution quality of the PH are sensitive to its

penalty factor. Little research in the literature has explored strategies of a variable­

dependent penalty factor. With fixed penalty factors, stochastic linear programs espe­

cially those with integer variables can be extremely intractable since it is hard to force

agreement among all decision variables in the PH process. Cases are that the PH falls into

an endless loop and never converges. It still remains elusive on how to effectively detect

the PH cyclic behavior and accelerate its convergence.

1.4 Dissertation Overview and Contributions

In this work, a MILP model for distribution systems with ESSs is formulated as a

two­stage stochastic programming problem, where ESS degradation is co­optimized in

the planning stage. Subsequently, the effects of ancillary service provision by ESSs and

uncertainties lying in scenarios are investigated in the solution. Our main contributions

are summarized as the following:

• A two­stage stochastic DSEP model that aims at minimizing the overall planning

cost is proposed. We leverage a Gaussian mixture model (GMM) to better illus­

trate the uncertainty observed from historical data for scenario generation instead

of directly sampling uncertain parameters from their historical data. Besides, the

degradation of ESSs and their revenue on ancillary services are both considered in

the distribution system planning.

• To stabilize the solution of two­stage stochastic programming with PH algorithms,

we propose to implement non­anticipativity constraints by computing a rational

average solution instead of the mathematical expectation of the first­stage decision

variables. Moreover, with parallel computing process and gap­dependent penalty

factors, the modified PH algorithm is further improved in solving the proposed

DSEP model. We demonstrate that our modified PH outperforms both the com­

mercial solver Gurobi and the L­shaped method, and prove the effectiveness of
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each algorithmic enhancement based on the traditional PH algorithm.

Chapter 1

Chapter 2

Introduction

Preliminaries

MILP Model & Economic Analysis Two-Stage SO Model & Algorithms

Conclusions

ü Background & motivation;
ü Literature review;

Introduction of distribution system expansion planning:
ü Deterministic linear programming;
ü Two-stage stochastic linear programming.
Introduction of acceleration algorithms:
ü Stage-Based decomposition: L-shaped method;
ü Scenario-Based decomposition: progressive hedging algorithm.

ü Gaps & challenges;
ü Dissertation overview.

Chapter 5

Chapter 3 Chapter 4

Modeling of uncertainties:
ü Gaussian mixture model;
Decomposition algorithms:
ü A modified progressive hedging algorithm:

ü Computation efficiency of Gurobi solver, L-shaped method, and PH;
ü Comparison among 4 PHs with different algorithmic enhancements.

Rational average solutions;
Parallel computing;
Gap-dependent penalty factors.

Model formulation:
ü Network configuration;
ü ESS & substation sitting & sizing.
Economic analysis:
ü Planning cost of a modified 33-node distribution system;
ü ESS degradation and profitability.

ü Monte Carlo simulation.

ü Dissertation summary; ü Future work directions.

Figure 1.6 An outline of the major parts of this dissertation.

The remainder of this dissertation is organized as Fig. 1.6. Chapter 2 details the pre­

liminaries of the dissertation including an overview of DSEP models and two types of

acceleration algorithms. Chapter 3 proposes the mathematical formulation of the deter­

ministic MILP model for the distribution system and the relevant case study. Based on

that, Chapter 4 reformulates two­stage stochastic programming to incorporate uncertain­

ties of load demand, electricity prices, and regulation signals. Representative scenarios

are generated via GMM, then the modified PH algorithm is introduced and utilized to

solve the two­stage stochastic program. The conclusion is drawn in Chapter 5.
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CHAPTER 2 PRELIMINARIES

2.1 Overview

In this chapter, we make a systematic review of research on DSEP models, includ­

ing deterministic linear programming and two­stage stochastic linear programming. The

general forms of these two types of programming models are introduced with detailed

descriptions of variables used. The two­stage stochastic linear program is proposed based

on the deterministic linear model, and is difficult to be solved because the first­stage de­

cision variables must be determined before the realization of random operation scenarios.

To take all possible realization into account, a deterministic equivalent program is intro­

duced which utilizes a value function to represent the expectation of the second­stage

objectives in all scenarios. By adding this function in the total objective, a more prescient

planning scheme can be obtained since we consider the future effect of the first­stage

decision from the beginning.

In order to solve two­stage stochastic linear programming more efficiently, compre­

hensive knowledge of acceleration algorithms is provided in this chapter. Generally, these

algorithms can be divided into stage­based and scenario­based decomposition methods.

Based on the expression of the deterministic equivalent program, we detail the implemen­

tation of two classical decomposition­based algorithms, the L­shaped method, and the PH

algorithm, by pseudo­code. The L­shaped method is a vertical decomposition technique

that separates the solving process of the first­stage master problem and the second­stage

subproblem into different steps. The PH algorithm is a horizontal decomposition method

where both the first­stage and the second­stage decision variables are solved in each sce­

nario. We then present a modification of the PH algorithm as one of our main contribu­

tions. The background information of these decomposition methods lays the foundation

for our modified PH proposed in the following section.

2.2 Distribution System Expansion Planning

To cope with the increasing load demand and high renewable penetration, more and

more distribution facilities like feeders, substations, and ESSs ought to be added to our
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distribution systems which were built decades ago. To determine the location, capacity,

and operation time for these facilities, an important optimization model named DSEP is

proposed to support the decision­making of system operators. In most cases, the objec­

tive of a DSEP consists of the investment cost, maintenance cost, and power purchasing

cost. Sometimes, the decision­maker will take other factors such as carbon emission and

energy loss into account, which will be discounted as cost and added to the objective.

In addition, some penalty terms will also be included in the objective function to avoid

adverse situations, i.e., power curtailment in the grid.

2.2.1 Deterministic Linear Programming

The general form of a deterministic linear program for power distribution system

planning is

min 𝑧 = 𝑐𝑇 𝑥

s.t. 𝐴𝑥 = 𝑏,

𝑥 ≥ 0,

(2.1)

where 𝑥 represents an 𝑛­dimensional decision variable, whose value will be determined
by solving this constrained optimization problem. 𝐴, 𝑏, and 𝑐 are parameters with 𝑚 × 𝑛,
𝑚 × 1, 𝑛 × 1 dimensions. The objective function min 𝑧 = 𝑐𝑇 𝑥 denotes the minimization of

the total cost spent for the distribution system. Besides, constraints are another important

part of the program which can be divided into two types: the simple non­negative require­

ment for decision variables 𝑥 ≥ 0, and important physical limits represented by 𝐴𝑥 = 𝑏.
Actually, there are both equality and inequality constraints involved in the distribution

system planning, i.e., power balance limit is equality and capacity limit is inequality con­

straint. By introducing slack variables, all inequalities can be reformed as equality ones:

𝑎𝑖𝑥 ≤ 𝑏𝑖 becomes 𝑎𝑖𝑥 + 𝑠𝑖 = 𝑏𝑖. (2.2)

Here 𝑠𝑖 is the non­negative slack variable whose coefficient is regarded as zero in the

objective function. In this way, all these constraints can be represented by a large linear

matrix equality 𝐴𝑥 = 𝑏.
To solve this linear program, our target is to find a specific value for the decision

variable 𝑥. A feasible solution is supposed to meet all constraints listed. Usually, there

is one optimal solution 𝑥∗ that satisfies the constraint set and 𝑐𝑇 𝑥∗ ≥ 𝑐𝑇 𝑥. Some pro­
grams could be infeasible without feasible solution or unbounded with the feasible region

16



CHAPTER 2 PRELIMINARIES

extending to infinity.

When performing sitting and sizing for multiple distribution facilities, a large num­

ber of binary decision variables should be introduced. It transforms the DSEP to mixed­

integer programming. Assuming that there are numerous investment collections of feed­

ers, substations, and ESSs, we need to check all their feasibility to ensure the specific

investment scheme can satisfy the constraint set at any time. After that, we need to pick

the optimal scheme with the lowest objective from all feasible solutions. With the follow­

ing notations:

𝑥𝑗 =
⎧⎪
⎨
⎪⎩

1 if distribution facility 𝑗 is built,

0 otherwise,
(2.3)

and

𝑐1𝑖 = cost of using distribution facility 𝑖, (2.4)

the DSEP model is illustrated by the following MILP:

min 𝑧 =
𝑛

∑
𝑖=1

𝑐1𝑖𝑥𝑖 + 𝑐𝑇
2 𝑦

s.t.
𝑛

∑
𝑖=1

𝑎1𝑖𝑥𝑖 + 𝐴2𝑦 ≤ 𝑏,

𝑥𝑖 ∈ {0, 1}, 𝑦 ≥ 0.

(2.5)

When 𝐴2 equals zero and the constraint becomes ∑𝑛
𝑖=1 𝑎1𝑖𝑥𝑖 ≤ 𝑏, representing a typical

constraint in a DSEPmodel, to avoid redundant distribution facility built at the same place.

2.2.2 Two­Stage Stochastic Linear Programming

For the sake of reliability and accuracy of planning, a deterministic linear program is

no longer practical due to its limitations of fixed parameters. Instead, random variables

𝜉 = 𝜉(𝜔) are introduced to replace those fixed parameters aiming to reflect the uncertainty
inherent in future operation scenarios. In this way, specific values of these random vari­

ables will only be determined after the realization of a certain stochastic scenario, a.k.a.

random experiments [48] .

Apart from the classification of integer and constant variables, decision variables are

divided into first­stage and second­stage ones under the stochastic setting. The first­stage

variable (i.e. the investment of a certain distribution facility) represents the decision made

before the random experiment, while the second­stage decision variable (i.e. the power
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bought from the bulk power system) is dependent on specific stochastic scenarios. The

common notations for the first­stage and second­stage variables are 𝑥 and 𝑦(𝜔), respec­
tively. Decision­makers have to determine the first­stage variable 𝑥 based on their prior

belief, i.e., which random event 𝜔 will happen [51] . Then, the second­stage variable 𝑦(𝜔)
will be solved under this specific event. Based on the event sequence, we have:

𝑥 → 𝜉(𝜔) → 𝑦(𝜔). (2.6)

After the introduction of two­stage decision variables, we reformulate the previous

linear program in Eq. (2.1) to two­stage stochastic programming [67­68] :

min 𝑧 = 𝑐𝑇 𝑥 + 𝐸𝜉 [min 𝑞(𝜔)𝑇 𝑦(𝜔)]
s.t. 𝐴𝑥 = 𝑏,

𝑇 (𝜔)𝑥 + 𝑊 𝑦(𝜔) = ℎ(𝜔),

𝑥 ≥ 0, 𝑦(𝜔) ≥ 0.

(2.7)

In the first stage, 𝑥 is a decision variable with the dimension of 𝑛1 × 1; 𝑐, 𝐴, and 𝑏 are

matrices with dimension 𝑛1 × 1, 𝑚1 × 𝑛1, and 𝑚1 × 1, separately; 𝑦(𝜔) is a 𝑛2­dimensional

vector; 𝑞(𝜔), ℎ(𝜔), and 𝑇 (𝜔) are 𝑛2×1,𝑚2×1, and𝑚1×𝑛1, respectively. After the random

experiment 𝜔 ∈ Ω, the second­stage decision variable 𝑦(𝜔) will be disclosed based on the
scenario­dependent matrices 𝑞(𝜔), ℎ(𝜔), and 𝑇 (𝜔).

The objective of Eq. (2.7) has two parts: the deterministic first­stage term 𝑐𝑇 𝑥 and the
mathematical expectation of the second­stage objective 𝑞(𝜔)𝑇 𝑦(𝜔) which is also known
as the recourse function. Note that this second­stage term will only be determined after

the realization of the random variable 𝜔 which follows the sequence in Eq. (2.6). We

hence rewrite the second­stage objective to

𝑄(𝑥, 𝜉(𝜔)) = min
𝑦 {𝑞(𝜔)𝑇 𝑦|𝑊 𝑦 = ℎ(𝜔) − 𝑇 (𝜔)𝑥, 𝑦 ≥ 0} . (2.8)

By defining the expectation of the second­stage objective as

𝒬(𝑥) = 𝐸𝜉𝑄(𝑥, 𝜉(𝜔)), (2.9)

we obtain a deterministic equivalent program which stresses the difference from a deter­

ministic linear program on the second­stage value function 𝒬(𝑥)

min 𝑧 = 𝑐𝑇 𝑥 + 𝒬(𝑥)

s.t. 𝐴𝑥 = 𝑏,

𝑥 ≥ 0.

(2.10)
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We can only get the exact optimal solution 𝑥∗ if we knowwhich scenario will be ultimately

realized. However, it is still impossible for us to predict the future. Hence we need to

compute the expected second­stage value 𝒬(𝑥) as a result of taking a certain decision 𝑥.
We consider the future effects of the first­stage decision by adding this term to the final

objective, thus reaching a more farsighted planning scheme.

2.3 Acceleration Algorithm

As mentioned in Section 2.2.2, for two­stage stochastic programming, the first­stage

decision variable has a long­term effect lasting for the whole planning period and should

be taken before the uncertainty is revealed. The short­term second­stage decision variable

tends to be affected by the first­stage decision and shows high dependence on random

variables in each scenario. Numerous random variables bring significant difficulty to the

solution of a two­stage stochastic program. Also, considering too many scenarios in the

program makes things worse.

A growing body of literature has emerged to solve this problem. Carøe et al. [69] pro­

posed a generalized L­shaped method to solve stochastic programs with integer recourse.

Two cases were utilized to demonstrate the effectiveness of cutting plane techniques and

the branch­and­bound algorithm in solving the second­stage problem. Laporte et al. [70]

proposed an integer L­shaped method and compared it with Benders decomposition and

the classical L­shaped method. The finite convergence and the solution optimality of the

proposed method were demonstrated by a two­stage stochastic program whose first­stage

decisions are binary. Gade et al. [71] utilized the PH algorithm to solve both two­stage

and multi­stage stochastic mixed­integer programming where the solution quality was

assessed via computing the lower bound from the PH algorithm. Watson et al. [51] pro­

vided four algorithmic innovations of PH algorithms to improve the efficiency of solving

a two­stage stochastic program with plenty of integer decision variables in both stages.

In summary, there are two types of acceleration algorithms designed as time­stage­

based decomposition and scenario­based decomposition, which can accelerate the solu­

tion of two­stage stochastic programming. The most well­known representatives of these

two decomposition methods are the L­shaped method and the PH algorithm, respectively.
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2.3.1 Stage­Based Decomposition: L­Shaped Method

Based on the formulation showed by Eq. (2.10), the L­shaped method utilizes a linear

term 𝜃 to replace the recourse function 𝒬(𝑥) in the master problem, thus reducing the

difficulty to obtain the optimal first­stage decision 𝑥𝑣 (the superscript 𝑣 index the number
of iteration). Then, after the feasibility check of 𝑥𝑣, the linear subproblem is solved and

its objective will be compared with the linear term 𝜃 to evaluate the recourse function.

The initial value of 𝜃 is usually set as a small enough number. So once the second­stage

objective is no larger than the value of 𝜃, the current 𝑥𝑣 becomes the optimal solution of

two­stage stochastic programming.
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Figure 2.1 Block structure of the two­stage extensive form.

The idea of the L­shaped method was originally proposed by Van Slyke andWets [46] .

The name of L­shape denotes the block structure of the two­stage extensive form of Eq.

(2.1). Under the assumption that the random vector 𝜉 has 𝑘 = 1, … , 𝐾 finite realizations,

the second­stage decision 𝑦𝑘 is matched with 𝜉𝑘 = (𝑞𝑘, ℎ𝑘, 𝑇𝑘) in each random event:

min 𝑐𝑇 𝑥 +
𝐾

∑
𝑘=1

𝑝𝑘𝑞𝑇
𝑘 𝑦𝑘

s.t. 𝐴𝑥 = 𝑏,

𝑇𝑘𝑥 + 𝑊 𝑦𝑘 = ℎ𝑘, 𝑘 = 1, … , 𝐾;

𝑥 ≥ 0, 𝑦𝑘 ≥ 0, 𝑘 = 1, … , 𝐾,

(2.11)

where 𝑝𝑘 represents the probability of each realization.

Based on the above extension form, the standard L­shaped method can be stated as

follows. We define three counting variables: the iteration index 𝑟, the optimality cut index
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𝑢, and the iteration index 𝑣.

Algorithm 1: Standard L­shaped Method.

1. Initialization: 𝑟 = 𝑢 = 𝑣 = 0.
2. while 𝜃𝑣 < 𝑤𝑣 do: 𝑣 ← 𝑣 + 1.
3. (𝑥𝑣, 𝜃𝑣) ← argmin𝑥(𝑐𝑇 𝑥 + 𝜃)
4. s.t. 𝐴𝑥 = 𝑏; 𝐷𝑓 𝑥 ≥ 𝑑𝑓 , 𝑓 = 1, … , 𝑟;
5. 𝐸𝑔𝑥 + 𝜃 ≥ 𝑒𝑔, 𝑔 = 1, … , 𝑢; 𝑥 ≥ 0, 𝜃 ∈ ℜ.
6. Set 𝐹 = 1.
7. for 𝑘 ∈ 𝐾 solve:
8. min𝑣+,𝑣−𝑤′ = 𝑒𝑇 𝑣+ + 𝑒𝑇 𝑣−

9. s.t. 𝑊 𝑦 + 𝐼𝑣+ − 𝐼𝑣− = ℎ𝑘 − 𝑇𝑘𝑥𝑣; 𝑦 ≥ 0, 𝑣+, 𝑣− ≥ 0.
10. if 𝑤′ ≥ 10−5 do: 𝐹 ← 0 break.
11. end if
12. end for
13. if 𝐹 = 0 do: 𝑟 ← 𝑟 + 1. 𝐷𝑟 = (𝜏𝑣)𝑇 𝑇𝑘, 𝑑𝑟 = (𝜏𝑣)𝑇 ℎ𝑘.
14. Add 𝐷𝑓 𝑥 ≥ 𝑑𝑓 , 𝑓 = 1, … , 𝑟 to the constraint set.
15. end if
16. if 𝐹 = 1
17. for 𝑘 ∈ 𝐾 solve:
18. min𝑦𝑤 = 𝑞𝑇

𝑘 𝑦
19. s.t. 𝑊 𝑦 = ℎ𝑘 − 𝑇𝑘𝑥𝑣; 𝑦 ≥ 0.
20. end for
21. Update: 𝑢 ← 𝑢 + 1,
22. 𝐸𝑢 = ∑𝐾

𝑘=1 𝑝𝑘(𝜋𝑣
𝑘)𝑇 𝑇𝑘, 𝑒𝑢 = ∑𝐾

𝑘=1 𝑝𝑘(𝜋𝑣
𝑘)𝑇 ℎ𝑘.

23. 𝑤𝑣 = 𝑒𝑢 − 𝐸𝑢𝑥𝑣.
24. Add 𝐸𝑔𝑥 + 𝜃 ≥ 𝑒𝑔, 𝑔 = 1, … , 𝑢 to the constraint set.
25. end if
26. end while

In Step 5, if there is no such constraint as 𝐸𝑔𝑥 + 𝜃 ≥ 𝑒𝑔 in the linear program, 𝜃𝑣 will

be set to −∞ and not be considered in Step 3. 𝑒𝑇 = (1, … , 1) in Step 8 is introduced to
check the feasibility of a first­stage decision 𝑥𝑣 when solving subproblems. 𝜏𝑣 in Step 13

and 𝜋𝑣
𝑘 in Step 22 represent the dual multipliers associated with the optimal solution of the

linear program in Step 8­9 and Step 18­19, respectively. By iteratively adding feasibility

cuts and optimality cuts, both feasible and optimal solution 𝑥𝑣 is eventually obtained.

2.3.2 Scenario­Based Decomposition: Progressive Hedging

Another representative decomposition method is the PH algorithm, which was ini­

tially utilized to solve programming with continuous decision variables. It was intro­

duced to solve two­stage stochastic programs recently. The PH algorithm has a different

decomposition rule from the L­shaped method. If we put the L­shaped method as a verti­

cal decomposition technique since it decomposes stochastic programs by time stages, then
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the PH algorithm is definitely a horizontal technique with a scenario­based decomposition

process. The latter works as an effective heuristic to solve the stochastic program in each

scenario, then the non­anticipativity constraint is utilized to promote the scenario­specific

solutions to converge on their mathematical expectation.

For notation simplicity, the two­stage extensive form in Eq. (2.11) is reformulated as

below:

min 𝑐𝑇 𝑥 +
𝐾

∑
𝑘=1

𝑝𝑘𝑞𝑇
𝑘 𝑦𝑘

s.t. (𝑥, 𝑦𝑘) ∈ 𝒬𝑘, ∀𝑘 ∈ 𝐾,

(2.12)

where (𝑥, 𝑦𝑘) ∈ 𝒬𝑘 denotes the constraint set in each realization. With both integer de­

cision variable 𝑥 and continuous 𝑦𝑘, some constraints in 𝒬𝑘 result in the non­convexity

of the stochastic program. To fix it, the scenario­dependent copied 𝑥𝑘 is introduced to

replace the first­stage decision 𝑥 via the non­anticipativity constraint 𝑥𝑘 = 𝑥, ∀𝑘 ∈ 𝐾 ,

which ensures 𝑥𝑘 must be the same for each scenario.

Node 1

Node 2

Node 3

Stage1 Stage2 Stage3

k=1

k=2
k=3

k=4

Scenario tree Individual scenarios

! !"#" #"

!: integer decision variable; #: continuous decision variable.

Stage1 Stage2 Stage3

Figure 2.2 Relationship between decision variables at different time stages and different scenar­
ios in the PH process.

We then apply Lagrangian relaxation to the non­anticipativity constraint and obtain

the following augmented Lagrangian dual function:

𝐿𝜌(𝑥, 𝑦𝑘, 𝑥̄𝑣−1, 𝑤) ∶=
𝐾

∑
𝑘=1

𝑝𝑘𝐿𝜌
𝑘(𝑥𝑘, 𝑦𝑘, 𝑥̄𝑣−1, 𝑤𝑘)

=
𝐾

∑
𝑘=1

𝑝𝑘 (𝑐𝑇 𝑥𝑘 + 𝑤𝑣−1
𝑘 ⋅ 𝑥𝑘 + 𝜌

2 ⋅ ‖𝑥𝑘 − 𝑥̄𝑣−1‖2 + 𝑞𝑇
𝑘 𝑦𝑘) ,

(2.13)

where 𝑤 denotes the Lagrange multiplier of the non­anticipativity constraint. Eq. (2.13)

is a fully separable objective function that can be solved individually in each scenario.

Fig. 2.2 further illustrates the relationship between decision variables at different time
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stages and different scenarios. The basic idea of the PH algorithm is to transform the

non­separable optimization into several scenario­based subproblems.

According to Eq. (2.11),Algorithm 2 is designed to show the decomposition process

of the PH algorithm. The positive penalty factor 𝜌 and termination threshold 𝜀 are input
parameters:

Algorithm 2: Standard Progressive Hedging Algorithm.

1. Initialization: 𝑣 ← 1, 𝑤𝑣−1
𝑠 ← 0, 𝑔𝑣 ← 0, ∀𝑘 ∈ 𝐾.

2. for 𝑘 ∈ 𝐾 do:
3. 𝑥𝑣

𝑘 ← argmin𝑥,𝑦𝑘
(𝑐𝑇 𝑥 + 𝑞𝑇

𝑘 𝑦𝑘) s.t. (𝑥, 𝑦𝑘) ∈ 𝒬𝑘
4. end for
5. Update: 𝑥̄𝑣 ← ∑𝐾

𝑘=1 𝑝𝑘𝑥𝑣
𝑘

6. for 𝑘 ∈ 𝐾 do: 𝑤𝑣
𝑘 ← 𝑤𝑣−1

𝑘 + 𝜌(𝑥𝑣
𝑘 − 𝑥̄𝑣).

7. end for
8. Update: 𝑔𝑣 ← ∑𝐾

𝑘=1 𝑝𝑘 ⋅ ‖𝑥𝑣
𝑘 − 𝑥̄𝑣‖.

9. while 𝑔𝑣 ≥ 𝜀 do: 𝑣 ← 𝑣 + 1.
10. for 𝑘 ∈ 𝐾 do:
11. 𝑥𝑣

𝑘 ← argmin𝑥,𝑦𝑘(𝑐𝑇 𝑥 + 𝑤𝑣−1
𝑘 ⋅ 𝑥 + 𝜌

2 ⋅ ‖𝑥 − 𝑥̄𝑣−1‖2 + 𝑞𝑇
𝑘 𝑦𝑘)

12. s.t. (𝑥, 𝑦𝑘) ∈ 𝒬𝑘
13. end for
14. repeat Step 5­8.
15. end while

2.4 Conclusions

We introduce two widely­used DSEP models in this chapter. The deterministic linear

program is one of the most straightforward planning methods. With slack variables, both

equality and inequality constraints can be written in a unified form 𝐴𝑥 = 𝑏. To solve this
program, we should search for a feasible solution 𝑥 which results in the lowest objective.

Sometimes the integer decision variable is involved in programming which can play a role

in sitting and sizing of certain facilities.

Considering that decision making is subject to considerable uncertain factors in a

real distribution system, two­stage stochastic programming is adopted. These decision

variables can be divided into two types according to the event sequence. The first­stage

decision is a common decision vector and is not affected by different realization while

the second­stage decision is scenario­specific. The objective of two­stage stochastic pro­

gramming has both the deterministic first­stage part and the mathematical expectation of

second­stage objectives in each scenario. To solve this intractable model formulation,
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some acceleration algorithms which can well decompose the whole program have been

proposed and modified in recent research.

Among these decomposition methods, two examples are introduced to demonstrate

their effectiveness in solving these coupled two­stage linear programs. The L­shaped

method utilizes a linear term to represent the second­stage value function, then approaches

this term by optimizing the subproblem in the following iterations. On the other hand, the

PH algorithm adopts a scenario­dependent copied 𝑥𝑘 via the non­anticipativity constraint.

Then, initial non­separable programming can be transformed into several scenario­based

subproblems. Finally, pseudo­codes of these two representative algorithms are given

based on the expression of two­stage stochastic linear programming in Section 2.2.2,

which is the theoretical foundation of the solution method in Section 4.3.2 and 4.3.3.
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CHAPTER 3 DETERMINISTIC PLANNING FOR A
DISTRIBUTION SYSTEM WITH ENERGY STORAGE

SYSTEMS

3.1 Overview

Siting and sizing of grid­level storage belong to the most crucial components of the

distribution system planning since ESSs can improve the renewable penetration as well

as postponing the upgrade of other distribution facilities. The flexibility and resilience of

power systems will also be enhanced with the integration of large­scale storage units [72] .

Furthermore, ESSs take advantage of the electricity price difference between peak and

valley load hours in order to make a profit from energy arbitrage [73] . Multiple ancillary

services such as frequency control, voltage control, and emergency services are dependent

on ESSs, more or less. Based on the above­mentioned advantages of this key facility,

we need to make further investigations to ESS profitability before investing in it in our

distribution systems.

The degradation of ESS is a key factor to be reckoned with. Recent research has

demonstrated that mitigating ESS degradation by reducing charge cycles contributes to

longer lifespan and higher profitability [9,74] . Besides, battery aging due to daily opera­

tion is also of interest in power system planning. Our ultimate objective is to realize the

maximum value of ESSs in real distribution systems.

In this chapter, an optimal planning scheme is proposed for distribution systemswhere

both the ESS degradation and its profitability from ancillary services are co­optimized. In

the planning stage, we consider the network configuration, substation expansion, as well

as ESS siting and sizing as a MILP model. Our target is to minimize the overall planning

costs, including investment and maintenance cost, power transaction cost, revenue from

regulation services, and degradation term of ESSs. By adding this degradation term to

the objective, ESS charging/discharging due to energy arbitrage and ancillary services is

optimized to prolong its lifetime, thus benefit the economy of the distribution system.

Eventually, the proposed planning model is testified on a 33­bus distribution system to

demonstrate its effect on promoting ESS profitability.
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3.2 Objective and Cost­Related Terms

The DSEP considering ESS degradation and regulation services is established as a

MILP model, illustrated in Fig. 3.1. The objective includes five expenses within the plan­

ning and operation stage. Network configuration, substation expansion, and ESS siting

and sizing are decided in the planning stage, where binary variable 𝑥 determines whether

to invest in the facility or not. As for operation, decision variables can be divided into

three categories, which are binary variable 𝑦 denoting the operating lines, substations,

and ESSs; continuous variables related to grid operation, i.e. power transmitted by sub­

stations 𝑝SUB𝑚,𝑏,𝑡; and the continuous vector 𝛽ESS𝑛,𝑡 related to ESS’s behaviors, including the

charge/discharge, regulation up/down and SOC.

Planning Stage

Operation Stage

Network Configuration Substation Expansion

+ _

ESS Siting & Sizing

ESS Operation

!"
#$, !&,'
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Feeder Operation Substation Operation Power from Bulk Syst.
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Figure 3.1 Overview of the MILP model.

In the planning stage, we assume that the distribution system will invest in lines, sub­

stations, and ESSs, whose maintenance fare is also covered in the overall cost. Besides,

electricity needs to be bought from a bulk power system as power transaction cost, which

will be affected by ESS operation.

Meanwhile, ESSs will provide regulation services to the bulk power system. In this
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section, the overall cost of the distribution system is minimized, and the possible revenue

of energy arbitrary and frequency regulation services should be considered. To prolong

ESS’s lifespan, a penalty term relevant to its degradation model is added to the objective

function.

3.2.1 Investment Cost

The DSEP includes the investment cost of lines, substations, and ESSs, denoted in

Eq. (3.1). Where 𝑥nL𝑘,𝑧 is the planning decision of the 𝑘th new line with option 𝑧, 𝑥SUB𝑚,𝑏 is

the planning decision of the substation on node 𝑚 with option 𝑏, and 𝑥ESS𝑛,𝑒 is the planning

decision of the ESS on node 𝑛with option 𝑒. They are binary decision variables, when 𝑥 =
1 represents the corresponding facility invested in the distribution system and otherwise

𝑥 = 0. 𝐶nL
𝑘,𝑧, 𝐶SUB

𝑚,𝑏 and 𝐶ESS
𝑛,𝑒 are the unit costs to built feeders, substations and ESSs of

certain options.

𝐶INV = ∑
𝑘∈ΨnL

∑𝑧
𝐶nL

𝑘,𝑧𝑥nL𝑘,𝑧 + ∑
𝑚∈ΩSUB

∑
𝑏

𝐶SUB
𝑚,𝑏 𝑥SUB𝑚,𝑏

+ ∑
𝑛∈ΩESS

∑𝑒
𝐶ESS

𝑛,𝑒 𝑥ESS𝑛,𝑒
(3.1)

Note that this work focuses on expansion planning, hence the investment of existing

lines will be precluded. Instead, their maintenance cost is considered in Eq. (3.2).

3.2.2 Maintenance Cost

Similarly, the total operation and maintenance cost needs to involve all the compo­

nents in the distribution network. Where 𝑦eL𝑗 is the operation decision of the 𝑗th existing
line, 𝑦nL𝑘,𝑧 is the operating decision of the 𝑘th new line with option 𝑧, 𝑦SUB𝑚,𝑏 is the operating

decision of the substation on node 𝑚 with option 𝑏, and 𝑦ESS𝑛,𝑒 is the operating decision

of the ESS on node 𝑛 with option 𝑒. 𝑦 = 1 denotes that the facility is in operation and

otherwise 𝑦 = 0. 𝑂eL
𝑗 , 𝑂nL

𝑘,𝑧, 𝑂SUB
𝑚,𝑏 , and 𝑂ESS

𝑛,𝑒 are the yearly maintenance costs of existing

lines, newly­built lines, substations and ESSs.

𝐶MAT =
𝑇

∑
𝑡=1

( ∑
𝑗∈ΨeL

𝑂eL
𝑗 𝑦eL𝑗 + ∑

𝑘∈ΨnL
∑𝑧

𝑂nL
𝑘,𝑧𝑦nL𝑘,𝑧

+ ∑
𝑚∈ΩSUB

∑
𝑏

𝑂SUB
𝑚,𝑏 𝑦SUB𝑚,𝑏 + ∑

𝑛∈ΩESS
∑𝑒

𝑂ESS
𝑛,𝑒 𝑦ESS𝑛,𝑒 )

(3.2)
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3.2.3 Power Transaction Cost

To supply the load demand, power is bought from the bulk power system and the cost

is denoted by 𝐶PT as below:

𝐶PT = ∑𝛼
𝜃𝛼

𝑇

∑
𝑡=1

( ∑
𝑚∈ΩSUB

𝑊 LMP
𝛼,𝑡 𝑝SUB𝑚,𝑏,𝑡) (3.3)

where 𝑝SUB𝑚,𝑏,𝑡 is the power transmitted from substation node 𝑚 with option 𝑏 at hour 𝑡, 𝜃𝛼

is the portion of typical seasonal scenario 𝛼. 𝑊 LMP denotes the locational marginal price

(LMP).

3.2.4 ESS Revenue of Regulation Services

In real­time operations, revenue will be earned for ESS’s providing regulation ser­

vices to the bulk system, denoted as 𝑊REG:

𝑊REG = ∑𝛼
𝜃𝛼

𝑇

∑
𝑡=1

∑
𝑛∈ΩESS

(𝑊 up
REG,𝛼,𝑡𝑟

up
𝑛,𝑡 + 𝑊 dn

REG,𝛼,𝑡𝑟
dn
𝑛,𝑡) (3.4)

where non­negative decision variables 𝑟up𝑛,𝑡, 𝑟dn𝑛,𝑡 determine how much regulation up/down

capacity is committed. 𝑊 up
REG,𝛼,𝑡 and𝑊 dn

REG,𝛼,𝑡 represent revenue of ESS providing the unit

capacity for regulation up and down.

3.2.5 Penalty Term of ESS Degradation

In order to trade off between profits earned by ESSs and the battery’s cycle degra­

dation cost, a penalty is added in the objective, which consists of two important vectors

shown in Eq. (3.5) and Eq. (3.6). The parameters 𝑎1, 𝑎2 and 𝑝𝑧 in (3.5) are constants

relevant to LIB types, which will affect the degradation rates of different ESS’s behav­

iors [9] . Besides, 𝑃𝑒,max is the maximum power output of the ESS with option 𝑒, which is
normally less than half of its nominal capacity 𝐸ESS

𝑒,max. (𝜎up𝛼,𝑡)2 and (𝜎dn𝛼,𝑡)2 are regulation

signal up/down variances at hour 𝑡 in scenario 𝛼. 𝜔up
𝛼,𝑡 and 𝜔dn

𝛼,𝑡 denote the proportion of

ESS capacity committed to regulation up/down services at hour 𝑡 in scenario 𝛼.
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𝜑𝛼 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝑎2
4 (1 − 𝑝𝑧)
𝑎2
4 (1 − 𝑝𝑧)

𝑎2
1𝑝𝑧

2𝑎2
𝑦ESS𝑛,𝑒 𝑃𝑒,max(1.5(𝜎up𝛼,𝑡)2 − 0.5(𝜎dn𝛼,𝑡)2 − 𝜔up

𝛼,𝑡𝜔dn
𝛼,𝑡)

𝑎2
1𝑝𝑧

2𝑎2
𝑦ESS𝑛,𝑒 𝑃𝑒,max(1.5(𝜎dn𝛼,𝑡)2 − 0.5(𝜎up𝛼,𝑡)2 − 𝜔up

𝛼,𝑡𝜔dn
𝛼,𝑡)

0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(3.5)

𝛽ESS𝑛,𝑡 = [𝑝ch𝑛,𝑡 𝑝dis𝑛,𝑡 𝑟up𝑛,𝑡 𝑟dn𝑛,𝑡 𝜉SOC𝑛,𝑡 ]
𝑇

(3.6)

Vector 𝛽ESS𝑛,𝑡 contains five types of continuous decision variables including the

charge/discharge power 𝑝ch𝑛,𝑡/𝑝dis𝑛,𝑡 , capacity for regulation up/down 𝑟up𝑛,𝑡/𝑟dn𝑛,𝑡, and SOC 𝜉SOC𝑛,𝑡 ,

which is related to behaviors of the ESS node 𝑛 at hour 𝑡.
As illustrated in Fig. 3.1, five expenses are involved in the objective shown in Eq.

(3.7), with both regulation services and degradation of ESSs taken into account.

min∑
𝑖

𝛾 𝑖
(𝐶INV + 𝐶MAT + 𝐶PT − 𝑊REG

+ ∑𝛼
𝜃𝛼

𝑇

∑
𝑡=1

∑
𝑛∈ΩESS

𝑀deg,𝑡𝜑𝑇
𝛼 𝛽ESS𝑛,𝑡 )

(3.7)

3.3 Kirchhoff’s Laws and Network Operational Constraints

This deterministic planning model considers typical constraints for DSEP including

Kirchhoff’s current law, node voltage limits, and feeders’ capacity, which are detailed as

below:

𝜩eL𝒇 eL
𝒕 + 𝜩nL𝒇 nL

𝒕 + ∑
𝑙∈Ω𝐷

𝑑cur
𝑙,𝑡 + ∑

𝑚∈ΩSUB

𝑝SUB𝑚,𝑏,𝑡

= ∑
𝑙∈Ω𝐷

𝐷𝑙,𝑡 − ∑
𝑛∈ΩESS

(𝑝dis𝑛,𝑡 − 𝑝ch𝑛,𝑡 + 𝜔up
𝛼,𝑡𝑟

up
𝑛,𝑡 − 𝜔dn

𝛼,𝑡𝑟dn𝑛,𝑡) ⋅ (1ℎ𝑟.)
(3.8)

|𝑍
eL
𝑗 𝑓 eL

𝑗,𝑡 + [ΞeL]𝑇
𝑅𝑜𝑤𝑗𝑢𝑡| ≤ 𝑀 ⋅ (1 − 𝑦eL𝑗,𝑡) ∀𝑗 ∈ ΨeL (3.9)

|𝑍
nL
𝑘,𝑧𝑓 nL

𝑘,𝑡 + [ΞnL]𝑇
𝑅𝑜𝑤𝑘𝑢𝑡| ≤ 𝑀 ⋅ (1 − 𝑦nL𝑘,𝑧,𝑡) ∀𝑘 ∈ ΨnL (3.10)
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0 ≤ 𝑑cur
𝑙,𝑡 ≤ 𝐷𝑙,𝑡 ∀𝑙 ∈ Ω𝐷 (3.11)

0 ≤ 𝑝SUB𝑚,𝑏,𝑡 ≤ ∑
𝑏

𝑦SUB𝑚,𝑏,𝑡𝐸
SUB
𝑏,max ∀𝑚 ∈ ΩSUB (3.12)

|𝑓 eL
𝑗,𝑡 | ≤ 𝑦eL𝑗,𝑡𝐹 eL

𝑗,max, |𝑓 nL
𝑘,𝑡 | ≤ ∑𝑧

𝑦nL𝑘,𝑧,𝑡𝐹
nL
𝑘,𝑧,max ∀𝑗 ∈ ΨeL, ∀𝑘 ∈ ΨnL. (3.13)

Based on the linearized network model [75­76] , Eqs. (3.8)­(3.10) implement the power

balance between the generation and the demand, following Kirchhoff’s Laws. The sim­

plified network expression is initially an adapted version of the DC power flow model

which used to be applied in the transmission system. However, previous research [3,77­78]

has demonstrated the effectiveness of this networkmodel in solvingDSEPwith acceptable

accuracy. Eqs. (3.11)­(3.12) set the upper and lower bound of network­related variables

to ensure that all distribution facilities operate within safe ranges. Analogously, the upper

bound of feeders is limited in Eq. (3.13), since the potential integration of ESSs may lead

to increase current at the end of feeders.

3.4 ESS Operational Constraints

In this section, we assume that the capacity of one ESS can be divided into two parts

for the use of energy arbitrage and regulation services [9] :

𝜉SOC𝑛,𝑡+1 = 𝜉SOC𝑛,𝑡 − (𝑝dis𝑛,𝑡 − 𝑝ch𝑛,𝑡 + 𝜔up
𝛼,𝑡𝑟

up
𝑛,𝑡 − 𝜔dn

𝛼,𝑡𝑟dn𝑛,𝑡) ⋅ (1ℎ𝑟.)

∀𝑛 ∈ ΩESS, 𝑡 = 1, 2, ⋯ , 23
(3.14)

0 ≤ 𝜉SOC𝑛,𝑡 ≤ ∑𝑒
𝑦ESS𝑛,𝑒,𝑡𝐸ESS

𝑒,max (3.15)

(𝑟dn𝑛,𝑡 + 𝑝ch𝑛,𝑡) ⋅ (1ℎ𝑟.) ≤ ∑𝑒
𝑦ESS𝑛,𝑒,𝑡𝐸ESS

𝑒,max − 𝜉SOC𝑛,𝑡 (3.16)

(𝑟up𝑛,𝑡 + 𝑝dis𝑛,𝑡 ) ⋅ (1ℎ𝑟.) ≤ 𝜉SOC𝑛,𝑡 (3.17)
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𝜔up
𝛼,𝑡𝑟

up
𝑛,𝑡 + 𝑝dis𝑛,𝑡 − 𝜔dn

𝛼,𝑡𝑟dn𝑛,𝑡 ≤ ∑𝑒
𝑦ESS𝑛,𝑒,𝑡𝑃 ESS

𝑒,max (3.18)

𝜔dn
𝛼,𝑡𝑟dn𝑛,𝑡 + 𝑝ch𝑛,𝑡 − 𝜔up

𝛼,𝑡𝑟
up
𝑛,𝑡 ≤ ∑𝑒

𝑦ESS𝑛,𝑒,𝑡𝑃 ESS
𝑒,max (3.19)

𝑟up𝑛,𝑡 + 𝑝dis𝑛,𝑡 ≤ ∑𝑒
𝑦ESS𝑛,𝑒,𝑡𝑃 ESS

𝑒,max (3.20)

𝑟dn𝑛,𝑡 + 𝑝ch𝑛,𝑡 ≤ ∑𝑒
𝑦ESS𝑛,𝑒,𝑡𝑃 ESS

𝑒,max (3.21)

𝜉SOC𝑛,𝑡 = ∑𝑒
𝑦ESS𝑛,𝑒,𝑡𝐸ESS

𝑒,0 , 𝑡 = 1, 24 (3.22)

𝑝ch𝑛,𝑡, 𝑝dis𝑛,𝑡 , 𝑟up𝑛,𝑡, 𝑟dn𝑛,𝑡 ≥ 0 (3.23)

Eq. (3.14) denotes the SOC update rule where we ignore the battery’s self­discharge

rate and resistive losses during ESS operation. For different options of ESSs, their SOC

ought to remain less than the nominal capacity 𝐸ESS
𝑒,max as shown in Eq. (3.15). Further­

more, constraints (3.16)­(3.17) limit the total capacity of ESSs used for providing ancillary

services. Even when 𝜔up
𝛼,𝑡 and 𝜔dn

𝛼,𝑡 equal 1, which means the full committed capacity for

regulation up/down is put into use, the total ESS operational capacity is still supposed

to be less than its SOC. Similarly, constraints (3.18)­(3.21) set the upper bound of ESS

power output in real time. Eq. (3.12) guarantees that the battery SOC in the end equals

that at the beginning of a typical day. The non­negativity characteristic of all ESS decision

variables is stressed in Eq. (3.23).

3.5 Construction Logical Constraints

To avoid building redundant projects on the same node, Eq. (3.24) denotes that only

one option of ESSs or substations built on a specific node can be chosen among all candi­

date choices. Eq. (3.25) denotes that the substation and ESS will not be available (𝑦 = 0)
when they are not constructed (𝑥 = 0). Otherwise, if the facility has been built (𝑥 = 1),
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its operating variable can be 1 or 0 (𝑦 = 0/𝑦 = 1). Eq. (3.26) guarantees the radiality of
the distribution system, where 𝑁SUB represents the number of operating substations.

∑
𝑏

𝑥SUB𝑚,𝑏 ≤ 1, ∑𝑒
𝑥ESS𝑛,𝑒 ≤ 1 (3.24)

𝑦SUB𝑚,𝑏 ≤ 𝑥SUB𝑚,𝑏 , 𝑦ESS𝑛,𝑒 ≤ 𝑥ESS𝑛,𝑒 (3.25)

∑
𝑗∈ΨeL

𝑦eL𝑗 + ∑
𝑘∈ΨnL

∑𝑧
𝑦nL𝑘,𝑧 = Γ − 𝑁SUB (3.26)

3.6 Constraint Reformulation by Big­M Method

Note 𝜑𝑇
𝛼 𝛽ESS𝑛,𝑡 in the objective (3.7) results in some computational difficulties due to

considering ESS siting and sizing. That is, the binary decision variable 𝑦ESS𝑛,𝑒 is multiplied

with the continuous variable 𝑟up𝑛,𝑡/𝑟dn𝑛,𝑡, thus the model is no longer MILP.

To this end, we apply Big­M method to reformulate this term, as illustrated in (3.27)­

(3.31), where 𝜒up
𝑛,𝑒,𝑡 and 𝜒dn

𝑛,𝑒,𝑡 are two ancillary decision variables and 𝑀 is a big constant

(1e+5). Non­negative variables 𝜒up
𝑛,𝑒,𝑡 and 𝜒dn

𝑛,𝑒,𝑡 are introduced to replace and relax the

product of 𝑦ESS𝑛,𝑒 and 𝑟up𝑛,𝑡/𝑟dn𝑛,𝑡.

𝜒up
𝑛,𝑒,𝑡 ≤ 𝑟up𝑛,𝑡, 𝜒dn

𝑛,𝑒,𝑡 ≤ 𝑟dn𝑛,𝑡 (3.27)

𝑟up𝑛,𝑡 ≤ 𝜒up
𝑛,𝑒,𝑡 + 𝑀 ⋅ (1 − 𝑦ESS𝑛,𝑒 ) (3.28)

0 ≤ 𝜒up
𝑛,𝑒,𝑡 + 𝑀 ⋅ 𝑦ESS𝑛,𝑒 (3.29)

𝑟dn𝑛,𝑡 ≤ 𝜒dn
𝑛,𝑒,𝑡 + 𝑀 ⋅ (1 − 𝑦ESS𝑛,𝑒 ) (3.30)

0 ≤ 𝜒dn
𝑛,𝑒,𝑡 + 𝑀 ⋅ 𝑦ESS𝑛,𝑒 (3.31)
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3.7 Case Study

3.7.1 A Modified 33­Bus Distribution System

A 33­bus distribution system [38] has been modified and tested to verify the effective­

ness of the proposedmethod. As shown in Fig. 3.2, these 5 dotted lines are alternatives for

building new feeders, and 32 solid ones represent existing lines. In the planning stage, the

topology can be changed with some new feeders built and other existing lines abandoned.

As mentioned in Section 3.5, no isolated node and loop are allowed in the operation stage,

which means only 32 feeders will be operating in the system.

23 24 25

26 27 28 29 30 31 32 33

19 20 21 22

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Existing Lines Candidate New Lines Load Node SUB Node

Figure 3.2 A modified 33­bus distribution system.

In terms of facility investment, we consider lines with three options varying in

impedance, power capacity, and unit cost, and relevant parameters are aligned with Zhao

et al. [79] . ESSs are considered to be built at the rest 32 nodes except the first one (slack

bus), which is the substation node. Options of these facilities in the distribution system

are given in Table 3.1. Besides, data sets for LMP named as 𝑊 LMP
𝛼,𝑡 in Eq. (3.3) and the

regulation price named as 𝑊 up
REG,𝛼,𝑡/𝑊

dn
REG,𝛼,𝑡 in Eq. (3.4) can be consulted here

[80] .

Table 3.1 Options for the substation and ESSs in the distribution system.

Facilities
Different Options

Candidate
nodes

Capacity
(MVA/MWh)

Power
(MW)

Construction
cost (104US$)

SUB 1

10 ­ 40

15 ­ 70

20 ­ 110

ESS 2­33

2 0.8 30

3.5 1.4 50

5 2 90
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3.7.2 Network Topology

23 24 25

26 27 28 29 30 31 32 33

19 20 21 22

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

(Case1)

23 24 25

26 27 28 29 30 31 32 33

19 20 21 22

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

(Case2)

23 24 25

26 27 28 29 30 31 32 33

19 20 21 22

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

(Case3)

23 24 25

26 27 28 29 30 31 32 33

19 20 21 22

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

(Case4)

ESS Nodes (Option2)ESS Nodes (Option1)SUB Node (Option3)

New Line (Option1) SUB Node (Option2)New Line (Option2)

Figure 3.3 Final topology of the deterministic MILP in four cases.

Assuming that the planning scheme will last for 14 years, four cases are designed

with the framework of the deterministic MILP proposed in Section 3.2 as below:
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• Case 1: both regulation service revenue and degradation penalty of ESSs are in­

cluded in the objective;

• Case 2: ESS degradation penalty is omitted;

• Case 3: regulation services of ESSs are ignored;

• Case 4: no ESS is built in the distribution system.

The network topology of four cases is shown in Fig. 3.3, where the capacity of Op­

tion1<Option2<Option3 for different facilities. For line construction, Case 1 and Case 2
both upgrade one feeder while the number for Case 3 and Case 4 is 2 and 6 respectively.

The substation, meanwhile, expands to the highest capacity in Case 3 and Case 4. From

the view of ESS deployment, the former two cases build more ESSs with larger capacities

than that of the latter two.

These differences demonstrate that without enough storage units, peak shaving in the

distribution system will be severely weakened, thus leading to the inevitability of feeder

upgrades. Besides, ESSs can discharge to satisfy the increasing load demand and lower

the requirements of substation capacity. Apart from Case 4 which does not consider ESSs,

fewer ESSs are constructed in Case 3, which indicates that the revenue from regulation

services is crucial to the economy of ESS investment.

3.7.3 Comparison of ESS Degradation

To further study the influence of degradation penalty in the objective function, nor­

malization degradation curves of three cases with ESSs are compared in Fig. 3.4.
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Figure 3.4 Capacity degradation behaviors of ESSs in Case 1­3.
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In practice, the threshold of ESS remaining capacity for the distribution system operator

(DSO) to end its use is set as 80% of the nominal value [18] , such that ESSs in Case 2 only

work for 7 years before retiring, while the periods for Case 1 and Case 3 are 8 and 11

years, respectively, hence the degradation penalty can prolong ESS lifetime for one year.

On the other hand, without providing regulation services, ESSs tend to have a longer

lifespan as the curve of Case 3. Though ESS regulation capacity is much less than that

of energy arbitrage, frequent regulation up and down in micro cycles are more harmful to

the cell capacity than relatively slow and macro charge­discharge cycles.

To better observe the aging process, ESS’s behaviors and its SOC in a typical day

of Case 1 are illustrated as Fig. 3.5. Generally, the number of full charge­discharge cy­

cles is about once per day, which adds up to 3000 to 4000 times in its 8­year lifespan.

Besides, by comparing the LMP and charge/discharge bars, the energy arbitrage of ESSs

which leverages the electricity price difference between peak and valley load hours is

demonstrated.
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Figure 3.5 Relationship between ESS behaviors and the LMP in Case 1.

3.7.4 Economic Analysis

In Table 3.2, all discounted expenses constituting the overall planning cost are listed.

Case 1 is the cheapest, while Case 4 is the most expensive one without ESS being built.

The second­highest expense is that of Case 3, because no extra revenue can be earned

from regulation services, which is crucial to ESS’s profitability in a distribution system.

And Case 2 being less economical than Case 1 is due to ESSs’ early retirement.
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Table 3.2 Discounted planning costs in four cases.

Terms (104US$) Case 1 Case 2 Case 3 Case 4

Regulation service ✓ ✓ × ×
ESS degradation ✓ × ✓ ×

Total cost 527.14 527.52 535.37 618.37

Line investment 19.80 19.80 39.61 158.43

SUB investment 39.61 39.61 62.24 62.24

ESS investment 79.21 79.21 33.95 0

Total maintenance cost 17.11 16.71 18.03 15.53

Power transaction cost 380.51 380.71 381.18 382.18

Regulation revenue 9.74 8.52 0 0

Degradation penalty 0.63 0 0.37 0

Considering low ESS profitability in Case 3, higher fare on the substation and feeders

is spent, because the limited capacity of ESS can not shave the peak load effectively. In

Case 1 and Case 2, the ESS investment cost is the same. In other words, once regulation

services are considered in the DSEP, the valuation of ESSs is improved significantly.

Since Case 2 retires ESSs one year in advance, its total maintenance cost will be reduced.

The highest maintenance cost is spent in Case 3, for it invests feeders and the substation

with higher capacity. Subsequently, the least cost on purchasing electricity is found in

Case 1 since its ESSs can carry out energy arbitrage one year longer than Case 2 and have

a higher capacity than Case 3. Additionally, the early disposal of ESSs in Case 2 earns

less regulation revenue due to the radical charge and discharge behaviors.

(b)(a)
Figure 3.6 Profitability of ESSs in Case 1­3.

In Fig. 3.6, Case 1­3 are compared with Case 4 (No ESS), where their profits of en­
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ergy arbitrage are calculated by differences in the power transaction cost shown in Table

3.2. It is observed from (a) that the investment and maintenance cost of ESSs is always

less than their reduction on the upgrade cost of the substation and lines, proving the econ­

omy of investing in ESSs in these cases. In (b), Case 1 with the highest degradation cost

also has the highest regulation revenue for a longer storage lifespan. Comparing to en­

ergy arbitrage, ESSs’ providing frequency regulation services earns more money in the

distribution system. This normally happens when the regulation price dominates over the

LMP or the LMP has a relatively smooth peak and valley.

3.8 Conclusions

In this chapter, both regulation services and ESS degradation were considered in the

DSEP.We leveraged aMILPmodel on a 33­node distribution system to obtain the optimal

planning decisions of line configuration, substation expansion, and ESS siting and sizing.

In order to demonstrate the effect of ancillary service provision and battery degrada­

tion on ESS profitability, four cases were designed. By comparing their planning results,

we came to a conclusion that in a long enough planning period, the ESS revenue from

energy arbitrage and regulation services will exceed its investment and maintenance fee,

proving the economy of investing in this facility. Furthermore, with consideration of the

degradation term, ESS tends to have a longer lifespan thus ends up yielding higher rev­

enue. The profitability from regulation services and energy arbitrage was also compared,

in which ESS regulation up/down tends to be more harmful to its capacity but making

more money in unit time.

Regarding the ESS aging process, we also illustrated the ESS’s cycle behavior in a

typical day of the optimal planning case. The general charge­discharge cycles add up

to 3000 to 4000 times in its 8­year lifetime, which is realistic and economically sound.

Through the comparison of the hourly LMP and charge/discharge power, ESS participat­

ing in energy arbitrage can be recognized in a legible manner.
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CHAPTER 4 TWO­STAGE STOCHASTIC
PROGRAMMING APPROACH

4.1 Overview

On the bedrock of the model formulation in Chapter 3, we propose to further incorpo­

rate uncertain factors, e.g., changing electricity prices and load demand, into DSEP in this

chapter. Uncertainty is one of the most crucial characteristics of real power systems. And,

uncertainty­based programming, in other words, stochastic programming often leads to

different planning results from deterministic programming. Taking numerous uncertain

parameters of planning problems is particularly challenging, which renders the appro­

priate scenario generation and efficient optimization extremely vital when confronting

stochastic programming problems.

In this chapter, we treat the above­mentioned problem as two­stage stochastic pro­

gramming. Multiple uncertainties are involved in the distribution system planning, in­

cluding renewable power output, load demands, and electricity prices. To obtain repre­

sentative scenarios, GMM is adopted to characterize historical data, then we are able to

generate an infinite number of scenarios based on the learned GMM. To accelerate the

solution of this stochastic linear program, the PH algorithm with parallel computing is

developed, accompanied by an adjustable penalty factor to boost its convergence. At last,

we demonstrate the effectiveness of both the planning model and the modified algorithm

through numerical experiments.

4.2 Model Formulation

To address the uncertainty issue of load demand and electricity prices in DSEP, we

further develop the deterministic MILP model as a two­stage stochastic program. In the

first stage, optimal expansion decisions of the master problem are obtained, then in the

second stage, the subproblem is solved to minimize the expected operation cost under pre­

vious investments. For each of the typical scenarios considered, the continuous solution

of the second­stage economic operation is incorporated into the master problem for better

planning decisions. When the difference between two adjacent iterations of the binary
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decision variables becomes negligible, the final optimal expansion planning scheme is

attained.

To reduce excessive variables as the number of scenarios increases, we assume that in

the following context all facilities should go into operation once being built, which means

the binary operating variable 𝑦 equals the planning decision 𝑥. For convenience, we use
𝑥 to represent all these investment/operating decisions on lines, substations, and ESSs.

4.2.1 Master Problem: First­Stage Expansion Planning

We assume that the substations, ESSs, and feeders are invested, owned, and operated

by the DSO. The first­stage objective function (4.1) aims to minimize the overall cost

spent during the planning stage, which can be divided into two groups: 1) the investment

cost 𝐶INV and maintenance cost 𝐶MAT for distribution facilities. 2) the mathematical

expectation of the operation cost in multiple scenarios, denoted by the recourse function

𝑄(𝑥, 𝑦𝑠). The variable 𝑦𝑠 which is continuous herein represents the optimal value of all

decision variables in the second stage.

min∑
𝑖

𝛾 𝑖
(𝐶INV + 𝐶MAT +

𝑆

∑
𝑠=1

𝜃𝑠𝑄(𝑥, 𝑦𝑠)) (4.1)

∑
𝑗∈ΨeL

𝑥eL𝑗 + ∑
𝑘∈ΨnL

∑𝑧
𝑥nL𝑘,𝑧 = Γ − 𝑁SUB (4.2)

∑
𝑏

𝑥SUB𝑚,𝑏 ≤ 1, ∀𝑚 ∈ ΩSUB (4.3)

∑𝑒
𝑥ESS𝑛,𝑒 ≤ 1, ∀𝑛 ∈ ΩESS (4.4)

𝑥eL𝑗 , 𝑥nL𝑘,𝑧, 𝑥SUB𝑚,𝑏 , 𝑥ESS𝑛,𝑒 ∈ {0, 1}

∀𝑗 ∈ ΨeL, 𝑘 ∈ ΨnL, 𝑚 ∈ ΩSUB, 𝑛 ∈ ΩESS

(4.5)

Eqs. (4.2)­(4.5) are constraints for the master problem, which have been explained

in Section 3.5. Besides, as indicated in Eq. (4.5), all the first­stage decision variables of

the MILP model are binary.
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4.2.2 Subproblems: Second­Stage Operational Strategies

After a solution is obtained in the master problem, a subproblem can be solved where

all decision variables are continuous. In the recourse function (4.6), we add the power

transaction cost 𝑊 LMP
𝑠,𝑡 𝑝SUB𝑚,𝑏,𝑠,𝑡, the penalty due to unserved loads 𝑀cur𝑑cur

𝑙,𝑠,𝑡 and the battery

degradation term 𝑀deg,𝑡𝜑𝑇
𝑠 𝛽ESS𝑛,𝑠,𝑡 , then minus the revenue earned by ESSs’ selling regula­

tion services (𝑊 up
REG,𝑠,𝑡𝑟

up
𝑛,𝑠,𝑡 + 𝑊 dn

REG,𝑠,𝑡𝑟
dn
𝑛,𝑠,𝑡), where 𝑀cur is a large number to avoid load

curtailment. Compared with model formulation in Section 3.2, the subscript 𝑠 is added
to denote that the operation decision variables in 𝑄(𝑥, 𝑦𝑠) are different among scenarios.
It is necessary to determine the operation state of feeders, substations and ESSs in each

scenario 𝑠.

𝑄(𝑥, 𝑦𝑠) = min
𝑇

∑
𝑡=1 ( ∑

𝑚∈ΩSUB

𝑊 LMP
𝑠,𝑡 𝑝SUB𝑚,𝑏,𝑠,𝑡 + ∑

𝑙∈Ω𝐷

𝑀cur𝑑cur
𝑙,𝑠,𝑡

+ ∑
𝑛∈ΩESS

𝑀deg,𝑡𝜑𝑇
𝑠 𝛽ESS𝑛,𝑠,𝑡 − ∑

𝑛∈ΩESS
(𝑊 up

REG,𝑠,𝑡𝑟
up
𝑛,𝑠,𝑡 + 𝑊 dn

REG,𝑠,𝑡𝑟
dn
𝑛,𝑠,𝑡))

(4.6)

𝜩eL𝒇 eL
𝒔,𝒕 + 𝜩nL𝒇 nL

𝒔,𝒕 + ∑
𝑙∈Ω𝐷

𝑑cur
𝑙,𝑠,𝑡 + ∑

𝑚∈ΩSUB

𝑝SUB𝑚,𝑏,𝑠,𝑡

= ∑
𝑙∈Ω𝐷

𝐷𝑙,𝑠,𝑡 − ∑
𝑛∈ΩESS

(𝑝dis𝑛,𝑠,𝑡 − 𝑝ch𝑛,𝑠,𝑡 + 𝜔up
𝑠,𝑡𝑟

up
𝑛,𝑠,𝑡 − 𝜔dn

𝑠,𝑡𝑟dn𝑛,𝑠,𝑡) ⋅ (1ℎ𝑟.)
(4.7)

|𝑍
eL
𝑗 𝑓 eL

𝑗,𝑠,𝑡 + [ΞeL]𝑇
𝑅𝑜𝑤𝑗𝑢𝑠,𝑡| ≤ 𝑀 ⋅ (1 − 𝑥eL𝑗 ) ∀𝑗 ∈ ΨeL (4.8)

|𝑍
nL
𝑘,𝑧𝑓 nL

𝑘,𝑠,𝑡 + [ΞnL]𝑇
𝑅𝑜𝑤𝑘𝑢𝑠,𝑡| ≤ 𝑀 ⋅ (1 − 𝑥nL𝑘,𝑧) ∀𝑘 ∈ ΨnL (4.9)

0 ≤ 𝑑cur
𝑙,𝑠,𝑡 ≤ 𝐷𝑙,𝑠,𝑡 ∀𝑙 ∈ Ω𝐷 (4.10)

0 ≤ 𝑝SUB𝑚,𝑏,𝑠,𝑡 ≤ ∑
𝑏

𝑥SUB𝑚,𝑏 𝐸SUB
𝑏,max ∀𝑚 ∈ ΩSUB (4.11)

|𝑓 eL
𝑗,𝑠,𝑡| ≤ 𝑥eL𝑗 𝐹 eL

𝑗,max, |𝑓 nL
𝑘,𝑠,𝑡| ≤ ∑𝑧

𝑥nL𝑘,𝑧𝐹 nL
𝑘,𝑧,max ∀𝑗 ∈ ΨeL, ∀𝑘 ∈ ΨnL (4.12)
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𝜉SOC𝑛,𝑠,𝑡+1 = 𝜉SOC𝑛,𝑠,𝑡 − (𝑝dis𝑛,𝑠,𝑡 − 𝑝ch𝑛,𝑠,𝑡 + 𝜔up
𝑠,𝑡𝑟

up
𝑛,𝑠,𝑡 − 𝜔dn

𝑠,𝑡𝑟dn𝑛,𝑠,𝑡) ⋅ (1ℎ𝑟.)

∀𝑛 ∈ ΩESS, 𝑡 = 1, 2, ⋯ , 23
(4.13)

0 ≤ 𝜉SOC𝑛,𝑠,𝑡 ≤ ∑𝑒
𝑥ESS𝑛,𝑒 𝐸ESS

𝑒,max (4.14)

(𝑟dn𝑛,𝑠,𝑡 + 𝑝ch𝑛,𝑠,𝑡) ⋅ (1ℎ𝑟.) ≤ ∑𝑒
𝑥ESS𝑛,𝑒 𝐸ESS

𝑒,max − 𝜉SOC𝑛,𝑠,𝑡 (4.15)

(𝑟up𝑛,𝑠,𝑡 + 𝑝dis𝑛,𝑠,𝑡) ⋅ (1ℎ𝑟.) ≤ 𝜉SOC𝑛,𝑠,𝑡 (4.16)

𝜔up
𝑠,𝑡𝑟

up
𝑛,𝑠,𝑡 + 𝑝dis𝑛,𝑠,𝑡 − 𝜔dn

𝑠,𝑡𝑟dn𝑛,𝑠,𝑡 ≤ ∑𝑒
𝑥ESS𝑛,𝑒 𝑃 ESS

𝑒,max (4.17)

𝜔dn
𝑠,𝑡𝑟dn𝑛,𝑠,𝑡 + 𝑝ch𝑛,𝑠,𝑡 − 𝜔up

𝑠,𝑡𝑟
up
𝑛,𝑠,𝑡 ≤ ∑𝑒

𝑥ESS𝑛,𝑒 𝑃 ESS
𝑒,max (4.18)

𝑟up𝑛,𝑠,𝑡 + 𝑝dis𝑛,𝑠,𝑡 ≤ ∑𝑒
𝑥ESS𝑛,𝑒 𝑃 ESS

𝑒,max (4.19)

𝑟dn𝑛,𝑠,𝑡 + 𝑝ch𝑛,𝑠,𝑡 ≤ ∑𝑒
𝑥ESS𝑛,𝑒 𝑃 ESS

𝑒,max (4.20)

𝜉SOC𝑛,𝑠,𝑡 = ∑𝑒
𝑥ESS𝑛,𝑒 𝐸ESS

𝑒,0 , 𝑡 = 1, 24 (4.21)

𝑝ch𝑛,𝑠,𝑡, 𝑝dis𝑛,𝑠,𝑡, 𝑟up𝑛,𝑠,𝑡, 𝑟dn𝑛,𝑠,𝑡 ≥ 0 (4.22)

There are two groups of the second­stage constraints: Eqs. (4.7)­(4.12) are for dis­

tribution system operation, and Eqs. (4.13)­(4.22) are for ESS operation. In the first

group, we adopt a distribution system power flow model with DC­approximated volt­

age deviation by introducing KCL in (4.7), and node voltage limit in (4.8), (4.9). Con­

straints (4.10)­(4.12) impose limits on maximal load curtailment, substation’s capacity

and feeder’s capacity, respectively.
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By partitioning the battery’s capacity into two parts, ESSs can achieve energy arbi­

trage by charging and discharging, while selling ancillary services by providing the reg­

ulation capacity. Eqs. (4.13)­(4.20) are physical constraints aligned with the settings of

Foggo et al. [9] . Eq. (4.21) forces all ESSs to maintain the same SOC at the beginning

and the end hour in a daily scene. The last constraint (4.22) pertains to the non­negativity

of ESS decision variables. It is noteworthy that a Big­M method is also adopted as Eqs.

(3.27)­(3.31), which is omitted in this section.

4.3 Solution Method

4.3.1 Modeling of Uncertainties

MCS based on single normal distribution may not well describe the diversity in power

output, load demand, relevant prices, and policies, hence generate scenarios that result in

deviation of the optimal solution from the actual economic scheme. In this work, a GMM

is introduced with the assumption that the original data follow a linear superposition of 𝐾
normal distributions [81] instead of a single one. Specifically, we suppose that scenarios

are drawn from a joint distribution 𝑃 (𝑋|𝑌 ) where the 𝑦𝑖 is a random variable indicating

fromwhich normal distribution this scenario 𝑥𝑖 is drawn. Therefore, the learning of GMM

parameters ̂𝜇𝑘 and 𝜎̂𝑘 lies in the maximal likelihood estimate scheme:

{ ̂𝜇𝑘, 𝜎̂𝑘}𝐾
1 = argmin

𝑛

∏
𝑖=1

𝑃 (𝑥𝑖|𝑦𝑖) ⋅ 𝑃 (𝑦𝑖) 𝑦𝑖 ∈ {1, ⋯ , 𝐾} (4.23)

which is tractable through the expectation­maximization algorithm. A scenario is sampled

from one of the 𝐾 normal distributions as:

𝑁(𝜇𝑘, 𝜎𝑘) for 𝑘 = 1, ⋯ , 𝐾 (4.24)

In this work, we set𝐾 = 4 and for each𝐾 generate scenarios according to the weights

of different normal distributions. For a given 𝑆 and 𝐾 , this sampling process can be

described as:

{𝑥𝑖|𝑦𝑖 = 𝑘}𝑆⋅𝑃 (𝑦𝑖=𝑘)
𝑖=1 ∼ 𝑁(𝜇𝑘, 𝜎𝑘) for 𝑘 = 1, ⋯ , 𝐾 (4.25)

hence, we obtain 𝑆 scenarios from these distributions. Fig. 4.1 illustrates the whole
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procedure, where scenario 𝑥𝑖 is a continuous vector, and the GMM is a weighted sum of

four Gaussian distributions, with the corresponding weights 𝑃 (𝑦𝑖 = 1), 𝑃 (𝑦𝑖 = 2), 𝑃 (𝑦𝑖 =
3), 𝑃 (𝑦𝑖 = 4), respectively. Based on the well­estimated parameters of the GMM, we can

easily generate adequate scenarios via the MCS method.
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!"#$$%"& 3
((*2, -2)
!"#$$%"& 4
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⋯
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⋯

⋯

Figure 4.1 Procedure of uncertainty modeling (PDF: the probability density function; MCS: the
Monto Carlo simulation method based on GMM).

4.3.2 L­Shaped Method

The L­shaped method is named for its dual block­angular structure [48] , where the

simplex multiplies need to be calculated in adding feasibility cuts and optimality cuts,

which are two major steps (Step 2 and Step 3) in Fig. 4.2 .

A linear program presented in Eq. (4.26) named master problem is solved in Step 1,

whose decision variables are the first­stage binary ones 𝑥eL𝑗 , 𝑥nL𝑘,𝑧, 𝑥SUB𝑚,𝑏 , 𝑥ESS𝑛,𝑒 and the lower

bound 𝜙 of the second­stage recourse. Once the optimal solution (𝑥𝑣, 𝜙𝑣) is obtained, we
come to Step 2 to check the feasibility of the subproblem. Note that for the first loop 𝑣 = 1,
𝜙 is ignored with its initial value 𝜙𝑣 set as −∞, and both the 𝐹 𝑟

𝑐𝑢𝑡 and 𝑂𝑢
𝑐𝑢𝑡 representing

the feasibility and optimality cuts are empty.

minℤ = ∑
𝑖

𝛾 𝑖
(𝐶INV + 𝐶MAT + 𝜙)

s.t. Constraints (4.2)­(4.5) & 𝐹 𝑟
𝑐𝑢𝑡 & 𝑂𝑢

𝑐𝑢𝑡.
(4.26)

In Step 2, variable 𝜈𝑎 is utilized to detect any violation in all subproblem constraints

(4.7)­(4.22) & (3.27)­(3.31), we move all their terms to the left side of the sign and leave

𝜈𝑎 at right, then the modified constraints mentioned in (4.27) are obtained (i.e. Eq. (4.16)
is reformulated as (𝑟up𝑛,𝑠,𝑡 + 𝑝dis𝑛,𝑠,𝑡) ⋅ (1ℎ𝑟.) − 𝜉SOC𝑛,𝑠,𝑡 ≤ 𝜈𝑎). After eliminating non­negative
restrictions like (4.22), the number of subproblem constraints 𝑆𝐶 numerically equals 𝜈𝑎.
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Figure 4.2 Flow chart of the L­shaped method.

min𝕎′
𝑠 = ∑

𝑎∈𝑆𝐶
|𝜈𝑎|

s.t. Modified Constraints (4.7)­(4.22) & (3.27)­(3.31).
(4.27)

The absolute values of all 𝜈𝑎 elements are added up as 𝕎′
𝑠 in Eq. (4.27), which is

minimized under all scenarios and compared with 0. If any 𝕎′
𝑠 is larger than the tolerance

threshold 1e­5, then Step 1 needs to be recalculated with one feasible cut (𝜏𝑣)𝑇 (𝑇𝑠𝑥 −
ℎ𝑠) ≥ 0 added to 𝐹 𝑟

𝑐𝑢𝑡. Here 𝜏𝑣 defines the associated simplex multipliers with the optimal

solution of (4.27). 𝑇𝑠 and ℎ𝑠 denote the coefficient of 𝑥 and the constant in Eqs. (4.7)­

(4.22) & (3.27)­(3.31) under scenario 𝑠, respectively.

min𝕎𝑠 = 𝑄(𝑥, 𝑦𝑠)

s.t. Constraints (4.7)­(4.22) & (3.27)­(3.31).
(4.28)

When all 𝕎′
𝑠 equal 0, (𝑥𝑣, 𝜙𝑣) obtained in Step 1 is demonstrated feasible for the

second­stage problem, then the algorithm will proceed with Step 3. The second­stage

expense 𝕎𝑠, which equals 𝑄(𝑥, 𝑦𝑠) in (4.6), is solved in Eq. (4.28) and the constraints are
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original formulations of (4.7)­(4.22) & (3.27)­(3.31) this time. The optimal 𝑤𝑣 is derived

from 𝑤𝑣 = ∑𝑆
𝑠=1 𝜃𝑠(𝜋𝑣

𝑠 )𝑇 (ℎ𝑠 − 𝑇𝑠𝑥𝑣), where 𝜋𝑣
𝑠 is the simplex multipliers of the solution

in (4.28) under each scenario. Subsequently, 𝜙𝑣 ≤ 𝑤𝑣 is checked, if it is satisfied, the

algorithm will end with the optimal investment decision 𝑥𝑣. Conversely, Step 1 will be

recalculated with one optimal cut ∑𝑆
𝑠=1 𝜃𝑠(𝜋𝑣

𝑠 )𝑇 (ℎ𝑠 − 𝑇𝑠𝑥) ≤ 𝜙 added to 𝑂𝑢
𝑐𝑢𝑡.

In this work, considering that Eq. (4.27) in Step 2 and (4.28) in Step 3 are solved

in each scenario, Parallel Computing Toolbox™ with MATLAB interface is adopted for

accelerating optimization by parfor­loops in multiple threads. Theoretically, if there are

enough workers available, the optimization can be solved concurrently with one scenario

in a single thread.

Algorithm 3: L­shaped Method with Parallel Computing.

1. Input: all parameters in the Nomenclature.
2. Initialization: 𝑟 = 𝑢 = 𝑣 = 0.
3. while 𝜙𝑣 < 𝑤𝑣 do: 𝑣 ← 𝑣 + 1.
4. if 𝑢 = 0 solve: (4.26) for 𝑥𝑣.
5. else solve: (4.26) for (𝑥𝑣, 𝜙𝑣).
6. end if
7. Set: 𝐹 = 1.
8. parfor 𝑠 ∈ 𝑆 solve: (4.27) for 𝕎′

𝑠 .
9. end parfor
10. for 𝑠 ∈ 𝑆
11. if 𝕎′

𝑠 ≥ 10−5 do: 𝐹 ← 0 break.
12. end if
13. end for
14. if 𝐹 = 0 do:𝑟 ← 𝑟 + 1, 𝐹 𝑟

𝑐𝑢𝑡 = [𝐹 𝑟
𝑐𝑢𝑡, (𝜏𝑣)𝑇 (𝑇𝑠𝑥 − ℎ𝑠) ≥ 0].

15. end if
16. if 𝐹 = 1
17. parfor 𝑠 ∈ 𝑆 solve: (4.28) for 𝕎𝑠.
18. end parfor
19. Update: 𝑢 ← 𝑢 + 1, 𝑤𝑣 = ∑𝑆

𝑠=1 𝜃𝑠(𝜋𝑣
𝑠 )𝑇 (ℎ𝑠 − 𝑇𝑠𝑥𝑣).

20. do: 𝑂𝑢
𝑐𝑢𝑡 = [𝑂𝑢

𝑐𝑢𝑡, ∑𝑆
𝑠=1 𝜃𝑠(𝜋𝑣

𝑠 )𝑇 (ℎ𝑠 − 𝑇𝑠𝑥) ≤ 𝜙].
21. end if
22. end while

In the pseudo­code applied for our two­stage MILP model, 𝐹 is the flag for subprob­

lem’s feasibility. Considering that break should not exist in parfor­loops, steps 10­13 has

been separated from 8­9. The corresponding serial number for Step 1, Step 2 and Step 3

is 3­6, 7­15 and 16­21, respectively. Obviously, the complexity of Step 2 determines the

efficiency of the L­shaped method to a great degree.

Differing from some economic dispatch models where Step 2 is simply omitted,
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for a DSEP problem, however, the first­stage expansion decisions can not guarantee the

second­stage operation being always feasible. In fact, without adding feasibility cuts in

the planning model, the optimal solution in most cases is to build as few distribution fa­

cilities as possible, which may conflict with the limits on the maximal capacity of current

facilities, such as feeders and substations. In some sense, DSEP first searches for solutions

that are feasible for the excessive load demand and then selects cost­optimal ones.

4.3.3 Progressive Hedging Algorithm

To simulate real conditions of distribution systems considering uncertainties in differ­

ent seasons, days, and hours, numerous daily operation scenarios are randomly generated

by the MCS method. However, the computation time will become intractable when too

many scenarios are included. Hence, we adopt a decomposition technique to address the

tractability issue and promote convergence. To determine a better option between the

L­shaped method and the PH algorithm, we compare their basic rules and come to a con­

clusion.

As for the L­shaped method, the algorithm efficiency relies on iterations between

the master problem and subproblem, i.e. the feasibility cuts and optimality cuts. It is

effective for some specific models because the feasibility check of the subproblem can

be omitted. Nevertheless, for a DSEP, the feasibility check of the first­stage planning

results is unavoidable. Besides, considering the sitting and sizing of facilities like ESSs

will add even more computational burden, which probably makes the L­shaped method

less efficient in solving DSEP problems.

The significant feature of the PH algorithm, however, lies in the scenario­based de­

composition technique. That is, for a large­scale MILP model with numerous scenarios,

the PH algorithm can solve the subproblem in a paralleled way, thus improving the effi­

ciency dramatically. Here, based on the PH algorithm proposed by Watson et al. [51] , we

decompose the two­stage stochastic model in Section 4.2 and apply PH to accelerate its

convergence.

For notation simplicity, in the following context we define the set of planning decision

variables as a new vector 𝑋𝑠 in (4.29) and (4.30). A modified formulation of ℚ(𝑠) in the
subproblem of scenario 𝑠 is denoted by (4.31).
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𝑋𝑠 ∶= {𝑥eL𝑗,𝑠, 𝑥nL𝑘,𝑧,𝑠, 𝑥SUB𝑚,𝑏,𝑠, 𝑥ESS𝑛,𝑒,𝑠| ∑
𝑏

𝑥SUB𝑚,𝑏,𝑠 ≤ 1,

∑𝑒
𝑥ESS𝑛,𝑒,𝑠 ≤ 1, ∑

𝑗∈ΨeL

𝑥eL𝑗,𝑠 + ∑
𝑘∈ΨnL

∑𝑧
𝑥nL𝑘,𝑧,𝑠 = Γ − 𝑁SUB,

𝑥eL𝑗,𝑠, 𝑥nL𝑘,𝑧,𝑠, 𝑥SUB𝑚,𝑏,𝑠, 𝑥ESS𝑛,𝑒,𝑠 ∈ {0, 1}}

(4.29)

𝑋𝑠(𝑞) =

⎧⎪
⎪
⎪
⎨
⎪
⎪
⎪⎩

𝑥eL𝑗,𝑠 𝑞 = 1

𝑥nL𝑘,𝑧,𝑠 𝑞 = 2

𝑥SUB𝑚,𝑏,𝑠 𝑞 = 3

𝑥ESS𝑛,𝑒,𝑠 𝑞 = 4

(4.30)

ℚ(𝑠) = min
𝑋𝑠,𝑦𝑠 ∑

𝑖
𝛾 𝑖

(𝐶INV + 𝐶MAT +
𝑆

∑
𝑠=1

𝜃𝑠𝑄(𝑥, 𝑦𝑠))

s.t. Constraints (4.7)­(4.22) & (3.27)­(3.31).

(4.31)

4.3.3.1 Computing Rational Vector 𝑋̄

Whenmaking an investment plan, the decision­makermay know nothing about which

scenario will be realized in the future. To avoid decisions dependent on specific scenarios,

the non­anticipativity constraints are introduced as Eq. (4.32).

⎧⎪
⎪
⎪
⎨
⎪
⎪
⎪⎩

𝑥eL𝑗,𝑠 = 𝑥̄eL𝑗 ∀𝑗 ∈ ΨeL

𝑥nL𝑘,𝑧,𝑠 = 𝑥̄nL𝑘,𝑧 ∀𝑘 ∈ ΨnL

𝑥SUB𝑚,𝑏,𝑠 = 𝑥̄SUB𝑚,𝑏 ∀𝑚 ∈ ΩSUB

𝑥ESS𝑛,𝑒,𝑠 = 𝑥̄ESS𝑛,𝑒 ∀𝑛 ∈ ΩESS

(4.32)

In PH algorithms, these constraints are implicitly implemented. After calculating

the average solution 𝑋̄ of the first­stage decision vector 𝑋𝑠 over all scenarios, the devia­

tion ‖𝑋𝑠 − 𝑋̄‖ will be punished in the objective to ensure that all planning decisions in

𝑠 ∈ 𝑆 are prone to approaching a common 𝑋̄ after finite iterations. In general, 𝑋̄ is a

mathematical expectation derived from ∑𝑠∈𝑆 𝜃𝑠 ⋅ 𝑋𝑠, and will be affected by every 𝑋𝑠.

However, in DSEP problems, especially those considering large uncertainties, chances

are that overload happens in some rare cases where distribution facilities such as feeders,
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substations, and ESSs with larger capacity are necessary. Given this circumstance, if we

continue to average planning decision variables over all scenarios, it is more likely to see

non­convergence or unacceptable long run­time in the PH algorithm, since 𝑋̄ will tend

to approach the solution with less investment but more frequent occurrence, leading to a

large punishment on decision variables of overload scenarios. Nevertheless, the overload

scenario has little chance to converge to the average solution, otherwise, the subproblem

will become infeasible.

The solution to a DSEP problem is supposed to be feasible in all scenarios involved.

Hence, we give higher priority to the overload scenarios, in other words, the most radical

investment solutions and calculate their expectations as a rational vector 𝑋̄ shown below:

𝑋̄𝑣(𝑞) =

⎧⎪
⎪
⎪
⎨
⎪
⎪
⎪⎩

∑𝑠∈𝑆 𝜃𝑠 ⋅ 𝑥𝑣,eL
𝑗,𝑠 𝑞 = 1

∑𝑠∈𝑆nL
𝜃𝑠 ⋅ 𝑥𝑣,nL

𝑘,𝑧,𝑠 𝑞 = 2

∑𝑠∈𝑆SUB
𝜃𝑠 ⋅ 𝑥𝑣,SUB

𝑚,𝑏,𝑠 𝑞 = 3

∑𝑠∈𝑆ESS
𝜃𝑠 ⋅ 𝑥𝑣,ESS

𝑛,𝑒,𝑠 𝑞 = 4

(4.33)

where 𝑋̄𝑣(𝑞) is the new average solution of decision variables in iteration 𝑣, and 𝑆nL,

𝑆SUB, 𝑆ESS are scenario sets producing planning results with feeders, substations and

ESSs of largest capacity, respectively. As for decision variables denoting existing lines’

investment, the corresponding 𝑋̄ is still the mathematical expectation of 𝑥𝑣,eL
𝑗,𝑠 in all sce­

narios since the original feeders can not address extreme cases like overload effectively.

As a result, the algorithm converges to a rational solution faster, for the DSEP with

more distribution facilities to built is always feasible in normal load scenarios. To avoid

over­investment in this scheme, sometimes only the average solution of the most crucial

and complex decision variables, i.e. ESS investment, will be handled as Eq. (4.33) does.

4.3.3.2 Parallel Computing Process

Since each subproblem is independently solved in PH algorithms, the optimization

in one scenario does not rely on others. Parallel Computing Toolbox™ with MATLAB

interface is adopted by parfor­loops in multiple threads.

Theoretically, if there are enough processors available, the optimization can be solved

concurrently with one scenario in a single thread. Consequently, the parallel processing

can be applied to the PH designed for Eq. (4.31) as illustrated in the Algorithm 4:
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Algorithm 4: PH Algorithm with Parallel Computing.

1. Input: PH parameters 𝜀, 𝜌(𝑞)={𝜌eL, 𝜌nL, 𝜌SUB, 𝜌ESS}.
2. Initialization: 𝑣 ← 1, 𝑤𝑣−1

𝑠 ← 0, 𝑔𝑣 ← 0, ∀𝑠 ∈ 𝑆.
3. parfor 𝑠 ∈ 𝑆 do:
4. 𝑋𝑣

𝑠 ← argmin𝑋𝑠,𝑦𝑠
ℚ(𝑠) s.t. (4.7)­(4.22) & (3.27)­(3.31).

5. end parfor
6. Update: 𝑋̄𝑣 according to Eq. (4.33).
7. for 𝑠 ∈ 𝑆 do: 𝑤𝑣

𝑠 ← 𝑤𝑣−1
𝑠 + ∑ 𝜌(𝑞)(𝑋𝑣

𝑠 − 𝑋̄𝑣).
8. end for
9. Update: 𝑔𝑣 ← ∑𝑠∈𝑆 𝜃𝑠 ⋅ ‖𝑋𝑣

𝑠 − 𝑋̄𝑣‖.
10. while 𝑔𝑣 ≥ 𝜀 do: 𝑣 ← 𝑣 + 1.
11. parfor 𝑠 ∈ 𝑆 do:
12. 𝑋𝑣

𝑠 ← argmin𝑋𝑠,𝑦𝑠(ℚ(𝑠) + 𝑤𝑣−1
𝑠 ⋅ 𝑋𝑠 + ∑ 𝜌(𝑞)

2 ⋅ ‖𝑋𝑠 − 𝑋̄𝑣−1‖2
).

13. end parfor
14. repeat Step 6­8.
15. Update: 𝑔(𝑞)𝑣={𝑔𝑣

eL, 𝑔𝑣
nL, 𝑔𝑣

SUB, 𝑔𝑣
ESS} in Step 9.

16. for 𝑞=1:4
17. if 0 < 𝑔(𝑞)𝑣 ≤ 1 do: 𝜌(𝑞) = (1 + 𝐴(𝑞)𝑔(𝑞)𝑣) ⋅ 𝜌(𝑞).
18. else do: 𝜌(𝑞) = (1 + 𝐵(𝑞)(𝑔(𝑞)𝑣 − 1)) ⋅ 𝜌(𝑞).
19. end if
20. if 𝑔(𝑞)𝑣 ≥ 𝑔(𝑞)𝑣−1 do: 𝜌(𝑞) = (2 + 𝐴(𝑞)𝑔(𝑞)𝑣) ⋅ 𝜌(𝑞).
21. end if
22. end for
23. end while

4.3.3.3 Gap­Dependent Penalty Factor

Empirically, planning results are found sensitive to the penalty factors. While a large

𝜌 can push to the early termination, it can also harm the economy of facilities to be in­

vested, i.e. the optimality of final solutions. By contrast, a small 𝜌 cannot effectively pe­
nalize the deviation of planning variables from their average solution 𝑋̄. What is worse,

for MILP models with binary planning decisions, sometimes the optimization falls into

endless loops due to 𝑔(𝑞)𝑣 in Step 15 of Algorithm 4 becoming fixed after several PH

iterations. In this case, a belated change of penalty factors can hardly address the situa­

tion since the oscillation of some integer variables has occurred, and thus lead to endless

cycling.

To deal with it, we adopt gap­dependent 𝜌(𝑞) values for better convergence rates while
ensuring the solution quality. In Step 16­22 of the pseudo­code, the gap values 𝑔(𝑞)𝑣 of the

line, substation, and ESS planning decisions are divided into two groups: for those smaller

than 1, we perform Step 17 to increase their 𝜌(𝑞) values; for others larger than 1, Step 18 is
conducted. 𝐴(𝑞) and 𝐵(𝑞) here represent vectors including the tuning parameters for 𝜌𝑣

eL,
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𝜌𝑣
nL, 𝜌𝑣

SUB, 𝜌𝑣
ESS, and can be adjusted for different models while their values are usually

around 1.

Both in Step 17 or Step 18, all 𝜌(𝑞) values are increased to a relatively small extent,
and the initial 𝜌(𝑞) should be consequently smaller than the magnitude of the unit cost
(𝐶 and 𝑂) of different distribution facilities. For early iterations, the PH algorithm will

yield large reductions in gaps, then Step 18 will be effective to punish the deviation of

binary variables among different scenarios, by increasing the penalty factors with a degree

depending on current gaps. Here, 𝐵(𝑞) is used to rescale the distance between 𝑔(𝑞)𝑣 and

1 for faster convergence.

However, the majority of PH iterations actually act in narrowing the already tiny

gaps which are usually smaller than 1. Then Step 17 comes into play, where we use

(1+𝐴(𝑞)𝑔(𝑞)𝑣) as the coefficient of 𝜌(𝑞), to ensure the penalty factors’ linearly increasing
with the changing gap. Instead of 𝐴(𝑞)𝑔(𝑞)𝑣, the coefficient in Step 17 guarantees the

continuous growth of 𝜌(𝑞) values even if 𝑔(𝑞)𝑣 becomes quite small. In this case, though,

the increment of 𝜌(𝑞) may not promote a convergence efficiently. Hence, Step 20­21 act
as a soft means of slamming compared with that of Watson et al. [51] , to avoid a rising

𝑔(𝑞)𝑣.

The rapid increase in penalty factors probably results in premature convergence of

some decision variables due to excessive punishment in ‖𝑋𝑣
𝑠 − 𝑋̄𝑣‖. As a result, 𝐵(𝑞)

tends to be less than 𝐴(𝑞), since in early iterations the gaps are large and cause significant
growth in the penalty factors of Step 18. In fact, a relatively small 𝜌(𝑞) can be adopted at
first, then increased progressively, yielding less impact on solution quality while ensuring

convergence.

4.4 Case Study

As for the two­stage stochastic model in Section 4.2, it is solved in 4, 20, 40 and 100

scenarios by two algorithms mentioned in Section 4.3.2 and 4.3.3. Considering uncer­

tainties from load demand, LMP, regulation signals, and prices, we try to find a planning

scheme of higher reliability and practicability.

4.4.1 Impact of Considering Uncertainties

In Fig. 4.3, the topologies of the two­stage stochastic MILP model in 4, 20, 40 and

100 scenarios are illustrated as (a), (b), (c) and (d). When considering more scenarios
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involving a wilder range of uncertainties, the planning scheme tends to become conser­

vative with more feeders built in (c) and (d), which may cope with some extreme cases of

overload.

ESS Nodes (Option3)ESS Nodes (Option1)

New Line (Option1) SUB Node (Option3)

ESS Nodes (Option2)

23 24 25

26 27 28 29 30 31 32 33

19 20 21 22

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

(a)

23 24 25

26 27 28 29 30 31 32 33

19 20 21 22

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

(b)

23 24 25

26 27 28 29 30 31 32 33

19 20 21 22

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

(c)

23 24 25

26 27 28 29 30 31 32 33

19 20 21 22

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

(d)
Figure 4.3 Network topology of the two­stage stochastic DSEP in scenario 4­100.

As illustrated in Table 4.1, planning results in different scenarios are listed and com­
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pared with that of the deterministic MILP model. As the number of scenarios increases,

the occurrence of overload or unusual regulation signals will be more likely. To ensure

the load balancing all the time, more expensive feeders and ESSs need to be built. Conse­

quently, the overall planning expense in 100 scenarios is more reliable in real conditions,

however, not the most economical one.

Table 4.1 Comparison of planning results of the deterministic MILP and two­stage stochastic
MILP.

DSEP Models Deterministic Two­stage stochastic MILP

(104US$) MILP S=4 S=20 S=40 S=100

Total cost 527.14 598.46 603.05 667.29 664.04

Line investment 19.80 19.80 19.80 39.61 39.61

SUB investment 39.61 62.24 62.24 62.24 62.24

ESS investment 79.21 90.53 101.85 147.11 147.11

Total maintenance cost 17.11 19.94 20.39 22.04 22.04

Power transaction cost 380.51 415.78 409.38 409.66 406.26

Regulation revenue 9.74 10.37 11.19 14.07 13.92

Degradation penalty 0.63 0.54 0.58 0.70 0.70

Moreover, a positive correlation between the total cost spent in DSEP and the scenar­

ios considered does not exist. Actually, the highest expense is shown in the result of S=40

as 6.6729 million dollars, since fewer scenarios generated from normal distributions have

higher randomness which may lead to a deviation from the optimal solution. With more

scenarios included in S=100, the power transaction cost and regulation revenue reflecting

ESS’s participation in energy arbitrage and regulation services tend to be the closest to

real expectation values among all the cases listed here.

4.4.2 Evaluation of Algorithm Performance

The performance of the L­shapedmethod and the modified PH algorithm is compared

with the Gurobi 8.1.1 in Table 4.2. With a 2.40 GHz Intel Core i5 processor and 8 GB

of memory, the speed of the modified PH is proved to be nearly 2­8 times of Gurobi

optimizer, and 3­15 times of the L­shaped method. However, the superiority of the L­

shaped method is revealed in its consistent approximation to the optimum solutions, while

the modified PH is more heuristic as discussed before.

Frankly, chances are that time savings obtained by PH­based algorithms may come
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Table 4.2 Comparison of computation time and solution quality among three solution methods
in different scenarios.

Scenario Method Time (s)
Objective Gap

(104US$) (%)

4

Gurobi 46.213 598.46 0.0027

L­shaped Method 79.009 598.47 0.0048

Modified PH 22.112 598.46 0.0023

20
Gurobi 430.607 603.05 0.0122

L­shaped Method 672.774 603.05 0.0122

Modified PH 141.251 603.05 0.0122

40
Gurobi 2478.567 667.29 0.0109

L­shaped Method 2979.775 667.29 0.0109

Modified PH 312.311 667.29 0.0107

100
Gurobi 4501.718 664.04 0.0416

L­shaped Method 13916.344 664.04 0.0416

Modified PH 872.529 672.69 1.3262

with a larger final optimality gap (S=100). Repeated experiments on more effective

penalty factors are needed but even so the optimal 𝜌 is not easy to find. Considering

that, great research value lies in improving the solution quality of PH without harming its

efficiency, with which we are trying to come up in Section 4.3.3. For DSEP with numer­

ous decision variables, the PH algorithm can accelerate the convergence but not ensure

the optimality of planning results.

Table 4.3 Tuning parameter values of the modified PH algorithm.

Scenario
Tuning parameters

𝐴(𝑞) 𝐵(𝑞)

4 1, 1, 1, 1 0.4, 0.4, 0.5, 0.8

20 1, 1, 1, 1.2 0.4, 0.4, 0.4, 0.3

40 1.2, 1.2, 1, 1 0.7, 0.8, 0.5, 0.5

100 1.2, 1.5, 1, 1 0.5, 0.8, 0.5, 0.4

For our model proposed in Section 4.2, tuning parameters of the modified PH are

listed in Table 4.3. As mentioned in Section 4.3.3, we develop three algorithmic enhance­

ments to the basic PH proposed by Watson et al. [51] . To prove their effectiveness, four
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PH algorithms are defined and compared as follows:

• Basic PH: neither computes a rational average solution in Section 4.3.3.1 nor adopts

gap­dependent penalty factors in Section 4.3.3.3;

• Average­solution PH: adopt the average solution to implement non­anticipativity

constraints;

• Gap­dependent PH: adopt gap­dependent penalty factors and use the same tuning

parameters as those in Table 4.3;

• Modified PH: adopt both algorithmic enhancements and is illustrated as the pseudo­

code in Section 4.3.3.2.

Table 4.4 Comparison of computation time and solution quality among four kinds of PH algo­
rithms in different scenarios.

Scenario Method Iteration Time (s)
Gap

(%)

4

Basic PH 17 85.481 0.0023

Average­sol PH 7 34.913 3.4157

Gap­dependent PH 5 27.389 0.0023

Modified PH 4 22.112 0.0023

20

Basic PH > 100 − −
Average­sol PH 15 454.266 0.0122

Gap­dependent PH 13 432.274 0.0122

Modified PH 6 141.251 0.0122

40

Basic PH > 100 − −
Average­sol PH 70 6161.924 0.0107

Gap­dependent PH > 100 − −
Modified PH 5 312.311 0.0107

100

Basic PH > 100 − −
Average­sol PH 9 1236.343 1.4447

Gap­dependent PH > 100 − −
Modified PH 5 872.529 1.3262

Considering that parallel computing technique has been widely used, we develop all

the above algorithms with parfor­loops. Besides, they are started with the same initial

values of penalty parameters 𝜌. In Table 4.4, the performance of four kinds of PH is

compared and the superiority of the modified one is reflected in terms of computation
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time and solution quality.

To save time, we set the maximal iteration as 100. In fact, the running time of one

iteration is almost the same among four PH algorithms in a single scenario, for those fail­

ing to converge within 100 iterations, their computation time far exceeds others. It is

noteworthy that both the modified PH and the average­solution PH can converge within

100 iterations in the case with 4­100 scenarios, while the gap­dependent PH converges

in 4 and 20 scenarios. The use of a rational average solution, therefore, is proved to be

more efficient in quickly achieving convergence than computing the mathematical expec­

tation. By comparing the average­solution PH and gap­dependent PH with the basic one

respectively, both algorithmic enhancements accelerate PH convergence by cutting down

iterations to a certain degree. Themodified PH convergewith the lowest iteration time and

optimality gap among these four algorithms, which further demonstrates the effectiveness

of combining the above­mentioned algorithmic enhancements.

Figure 4.4 Objective values throughout iterations of four kinds of PH algorithms.

These four PH convergence profiles for the experiments performed in 20 scenarios

are given in Fig. 4.4, in which we provide plots of iteration number versus objective val­

ues, to represent the total planning cost in each iteration. The modified PH and average­

solution PH have decreasing trends of objective values before convergence, since they

both adopt the average solution which reflects more distribution facilities invested to ad­

dress overload cases. As illustrated in the plot, only basic PH tends to display cycling

behaviors within 100 iterations. And the effective use of algorithmic enhancements in

Section 4.3.3.1 and 4.3.3.3, both yield rapid iteration improvement in objective values of
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the average­solution PH and gap­dependent one.

4.5 Conclusions

In this chapter, we reformulated the previous deterministic planning model to two­

stage stochastic linear programming. Grounded on the preliminaries in Section 2.2.2, we

presented the setups of the master problem and subproblems.

To better represent the randomness intrinsic to the planning period, we chose GMM

to form smooth approximations to arbitrary PDFs of stochastic parameters in the distri­

bution system. Therefore, based on the well­trained GMM, representative scenarios were

generated via Monte Carlo sampling. Also, to fix the computational burden which in­

creases with the scale of scenarios, we utilized two decomposition methods introduced in

Section 2.3 to solve two­stage stochastic programming under the settings of 4, 20, 40, and

100 scenarios. By comparing the computation time of the L­shaped method and the PH

algorithm, we demonstrated the superiority of the modified PH on efficiency in solving

large­scale distribution system planning problems.

In order to make the best of PH algorithms’ advantage in scenario­based decompo­

sition, we implemented a paralleled PH algorithm. We also came up with two effective

algorithmic enhancements and demonstrated their effectiveness by four different PH al­

gorithms. In the convergence profile of each PH algorithm, the modified PH outperforms

the basic PH, the average­solution PH, and the gap­dependent PH. This corroborates the

significance of combining enhancements proposed in Sections 4.3.3.1 and 4.3.3.3.
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CHAPTER 5 CONCLUSIONS AND FUTURE WORK

5.1 Dissertation Summary

In this dissertation, both regulation services and degradation penalty of ESSs were

considered to minimize the overall planning cost of distribution systems. The planning

decision of line configuration, substation expansion, storage siting and sizing on the 33­

bus distribution network is optimized via a MILP model. Subsequently, this deterministic

model was reformulated to two­stage stochastic programming by adopting a GMM to han­

dle various uncertainties. Then, a modified PH algorithmwas proposed to solve the model

with a parallel computing process, with which we improved the computation efficiency by

2­8 times compared with the Gurobi optimizer, and 3–15 times with the L­shaped method.

Moreover, we observed from the deterministic planning results that adding degradation

penalty to the objective can prolong the storage lifetime by one year, then cut down the

overall cost during the whole planning.

Numerical results showed that ESSs earned as much revenue as energy arbitrage by

offering regulation services. According to this finding, it is advised to promote the con­

struction of storage units in distribution networks for higher profits. We were also noticed

that the storage degradation over a planning horizon is necessary to be considered for ap­

plications to extend the lifespan of expensive ESSs. Besides, our modified PH algorithm

was proved able to solve planning problems with multiple stochastic scenarios efficiently.

To demonstrate the effectiveness of each algorithmic enhancement of the modified

PH algorithm, we performed controlled experiments on four different PH algorithms

where they differ from each other on the use of the specific algorithmic enhancement.

The result showed that though both enhancements can accelerate convergence when com­

pared with the basic PH, computing a rational average solution is more effective in stable

convergence. And the superiority of the modified PH further proved the effectiveness of

combining two algorithmic enhancements.

Readers are encouraged to refer to https://doi.org/10.6084/m9.figshare.11952531.v1

for access to all datasets used in this dissertation. This is an open­sourced online data

repository hosted by Figshare [79] .
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5.2 Future Work

We would also like to point out the work in progress as well as possible future works

from the achievements of this dissertation. We bullet point the future directions on the

formulation and solution of proposed DSEP models.

First, we can utilize mixed­integer second­order cone programming (MISOCP) for

the distribution system planning that adopts the extended DistFlowmodel of AC­OPF [82] .

By considering both active and reactive power flow, more ancillary services such as the

voltage and reactive power support from ESSs can be modeled in the planning stage,

thus further improving ESS financial value. At present, we have already implemented

the MISOCP model on a 24­node test system [78] . Note that the integration of ESSs into

the distribution system may lead to bi­directional power flow, the feasibility of planning

results is supposed to be checked with AC power flow results.

On the other hand, the computational efficiency of the modified PH algorithm pro­

posed in this dissertation can also apply to the above­mentioned MISOCP model. With

more integer variables taken into account, new algorithmic enhancements are needed to

ensure a fast convergence rate. To this end, we are now trying to implement the Frank­

Wolfe progressive hedging (FW­PH) algorithm [83] to our planning model as the FW­PH

is insensitive to the selection of iterative penalty factors. This characteristic also enables

a wider range of FW­PH applications of stochastic optimization for distribution planning

problems.
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This dissertation discusses and explores the power distribution system (PDS) expan­

sion planning problem with energy storage (ES) providing ancillary service (AS), e.g.

energy arbitrary and frequency regulation service for PDS, which is considered to be an

important future trend of ES’s application in smart grid. It proposes a stochastic planning

method to address PDS’s uncertainties in terms of renewable and load fluctuations, as well

as AS prices, in which a scenario­based decomposition method, i.e. progressive hedging

(PH), is modified and applied to accelerate the convergence and even outperform state­of­

the­art commercial software in case studies. This dissertation is overall well­structured,

with sufficient literature review and research gap concluded in the introduction, followed

by theory preliminaries. Then the deterministic planning model is proposed for PDS plan­

ning with ES considering its AS benefits and degradation cost, and further developed to

be a two­stage stochastic programming model and solved by modified PH, showing its

clear contributions to the related research area.
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The dissertation proposes an expansion planning model for distribution systems with

energy storage systems (ESSs) where the storage degradation and ancillary service rev­

enue are both considered. The proposed model is formulated as mixed­integer linear pro­

gramming that optimizes the overall planning cost, including investment and maintenance

cost, power transaction cost and ESS revenue from frequency regulation ancillary ser­

vices. A degradation penalty is added to the objective to avoid excessive charge/discharge

when ESS provides ancillary services, thus prolonging its lifespan to make more profits.

Main innovative achievements of this dissertation include：
1. A two­stage stochastic planning model for power distribution systems considering

ESS degradation is proposed, where energy arbitrage and frequency regulation services

provided by ESSs are co­optimized with ESSs’ siting and sizing options.

2. We leverage a Gaussian mixture model to better illustrate the uncertainty in the dis­

tribution system for scenario generation instead of directly sampling uncertain parameters

from their historical data.

3. A modified progressive hedging (PH) algorithm with parallel computing is in­

troduced to improve the computation efficiency. Based on the traditional PH algorithm,

the idea of implementing non­anticipativity constraints by computing a rational average

solution instead of the mathematical expectation is originally presented. Moreover, with

gap­dependent penalty factors, the modified PH algorithm is further improved in solving

the proposed model and has outperformed a solver Gurobi and the L­shaped method.
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edge and systematic specific research knowledge in relevant disciplines, ability to com­
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